Advertisement

The Journal of Physiological Sciences

, Volume 66, Issue 6, pp 477–490 | Cite as

Different rate-limiting activities of intracellular pH regulators for HCO3 secretion stimulated by forskolin and carbachol in rat parotid intralobular ducts

  • Kaori Ueno
  • Chikara HironoEmail author
  • Michinori Kitagawa
  • Yoshiki Shiba
  • Makoto Sugita
Original Paper

Abstract

Intracellular pH (pHi) regulation fundamentally participates in maintaining HCO3 release from HCO3 -secreting epithelia. We used parotid intralobular ducts loaded with BCECF to investigate the contributions of a carbonic anhydrase (CA), anion channels and a Na+–H+ exchanger (NHE) to pHi regulation for HCO3 secretion by cAMP and Ca2+ signals. Resting pHi was dispersed between 7.4 and 7.9. Forskolin consistently decreased pHi showing the dominance of pHi-lowering activities, but carbachol gathered pHi around 7.6. CA inhibition suppressed the forskolin-induced decrease in pHi, while it allowed carbachol to consistently increase pHi by revealing that carbachol prominently activated NHE via Ca2+-calmodulin. Under NHE inhibition, forskolin and carbachol induced the remarkable decreases in pHi, which were slowed predominantly by CA inhibition and by CA or anion channel inhibition, respectively. Our results suggest that forskolin and carbachol primarily activate the pHi-lowering CA and pHi-raising NHE, respectively, to regulate pHi for HCO3 secretion.

Keywords

Intracellular pH Rat parotid intralobular ducts Bicarbonate secretion Na+–H+ exchanger Carbonic anhydorase Cl channels 

Notes

Acknowledgments

This work was carried out partially at the Analysis Center of Life Science, Natural Science Center for Basic Research and Development, Hiroshima University.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

References

  1. 1.
    Cook DI, Van Lennep EW, Roberts ML, Young JA (1994) Secretion by the major salivary glands. In: Johnson LR (ed) Physiology of the gastrointestinal tract, 3rd edn. Raven Press, New York, pp 1061–1117Google Scholar
  2. 2.
    Lee MG, Ohana E, Park HW, Yang D, Muallem S (2012) Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev 92:39–74CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Melvin JE, Yule D, Shuttleworth T, Begenisich T (2005) Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol 67:445–469CrossRefPubMedGoogle Scholar
  4. 4.
    Hirono C, Sugita M, Furuya K, Yamagishi S, Shiba Y (1998) Potentiation by isoproterenol on carbachol-induced K+ and Cl currents and fluid secretion in rat parotid. J Membr Biol 164:197–203CrossRefPubMedGoogle Scholar
  5. 5.
    Catalán MA, Kondo Y, Peña-Munzenmayer G, Jaramillo Y, Liu F, Choi S, Crandall E, Borok Z, Flodby P, Shull GE, Melvin JE (2015) A fluid secretion pathway unmasked by acinar-specific Tmem16A gene ablation in the adult mouse salivary gland. Proc Natl Acad Sci USA 112:2263–2268CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nakamoto T, Shiba Y, Hirono C, Sugita M, Takemoto K, Iwasa Y, Akagawa Y (2002) Carbachol-induced fluid movement through methazolamide-sensitive bicarbonate production in rat parotid intralobular ducts: quantitative analysis of fluorescence images using fluorescent dye sulforhodamine under a confocal laser scanning microscope. Eur J Cell Biol 81:497–504CrossRefPubMedGoogle Scholar
  7. 7.
    Nakamoto T, Hirono C, Sugita M, Takemoto K, Iwasa Y, Akagawa Y, Shiba Y (2002) Forskolin-induced clearance of the fluorescent dye sulforhodamine from rat parotid intralobular duct lumen: visualization of the secretory function under a confocal laser scanning microscope. J Membr Biol 190:189–196CrossRefPubMedGoogle Scholar
  8. 8.
    Chaturapanich G, Ishibashi H, Dinudom A, Young JA, Cook DI (1997) H+ transporters in the main excretory duct of the mouse mandibular salivary gland. J Physiol 503:583–598CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Li J, Koo NY, Cho IH, Kwon TH, Choi SY, Lee SJ, Oh SB, Kim JS, Park K (2006) Expression of the Na+–HCO3 cotransporter and its role in pHi regulation in guinea pig salivary glands. Am J Physiol Gastrointest Liver Physiol 291:G1031–G1040CrossRefPubMedGoogle Scholar
  10. 10.
    Melvin JE (1999) Chloride channels and salivary gland function. Crit Rev Oral Biol Med 10:199–209CrossRefPubMedGoogle Scholar
  11. 11.
    Martin CJ, Young JA (1971) A microperfusion investigation of the effects of a sympathomimetic and a parasympathomimetic drug on water and electrolyte fluxes in the main duct of the rat submaxillary gland. Pflugers Arch 327:303–323CrossRefPubMedGoogle Scholar
  12. 12.
    Hirono C, Nakamoto T, Sugita M, Iwasa Y, Akagawa Y, Shiba Y (2001) Gramicidin-perforated patch analysis on HCO3 secretion through a forskolin-activated anion channel in rat parotid intralobular duct cells. J Membr Biol 180:11–19CrossRefPubMedGoogle Scholar
  13. 13.
    Dinudom A, Komwatana P, Young JA, Cook DI (1995) A forskolin-activated Cl current in mouse mandibular duct cells. Am J Physiol 268:G806–G812PubMedGoogle Scholar
  14. 14.
    Lee MG, Choi JY, Luo X, Strickland E, Thomas PJ, Muallem S (1999) Cystic fibrosis transmembrane conductance regulator regulates luminal Cl/HCO3 exchange in mouse submandibular and pancreatic ducts. J Biol Chem 274:14670–14677CrossRefPubMedGoogle Scholar
  15. 15.
    Ohshima K, Shiba Y, Hirono C, Sugita M, Iwasa Y, Shintani H (2003) Luminal space enlargement by carbachol in rat parotid intralobular ducts. Eur J Oral Sci 111:405–409CrossRefPubMedGoogle Scholar
  16. 16.
    Evans RL, Bell SM, Schultheis PJ, Shull GE, Melvin JE (1999) Targeted disruption of the Nhe1 gene prevents muscarinic agonist-induced up-regulation of Na+/H+ exchange in mouse parotid acinar cells. J Biol Chem 274:29025–29030CrossRefPubMedGoogle Scholar
  17. 17.
    Nguyen HV, Shull GE, Melvin JE (2000) Muscarinic receptor-induced acidification in sublingual mucous acinar cells: loss of pH recovery in Na+–H+ exchanger-1 deficient mice. J Physiol 523:139–146CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Park K, Olschowka JA, Richardson LA, Bookstein C, Chang EB, Melvin JE (1999) Expression of multiple Na+/H+ exchanger isoforms in rat parotid acinar and ductal cells. Am J Physiol 276:G470–G478PubMedGoogle Scholar
  19. 19.
    Park K, Evans RL, Watson GE, Nehrke K, Richardson L, Bell SM, Schultheis PJ, Hand AR, Shull GE, Melvin JE (2001) Defective fluid secretion and NaCl absorption in the parotid glands of Na+/H+ exchanger-deficient mice. J Biol Chem 276:27042–27050CrossRefPubMedGoogle Scholar
  20. 20.
    Yun CHC, Oh S, Zizak M, Steplock D, Tsao S, Tse CM, Weinman EJ, Donowitz M (1997) cAMP-mediated inhibition of the epithelial brush border Na+/H+ exchanger, NHE3, requires an associated regulatory protein. Proc Natl Acad Sci USA 94:3010–3015CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lee MG, Schultheis PJ, Yan M, Shull GE, Bookstein C, Chang E, Tse M, Donowitz M, Park K, Muallem S (1998) Membrane-limited expression and regulation of Na+–H+ exchanger isoforms by P2 receptors in the rat submandibular gland duct. J Physiol 513:341–357CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Heming TA, Bidani A (1995) Na+–H+ exchange in resident alveolar macrophages: activation by osmotic cell shrinkage. J Leukoc Biol 57:609–616PubMedGoogle Scholar
  23. 23.
    van Borren MMGJ, Baartscheer A, Wilders R, Ravesloot JH (2004) NHE-1 and NBC during pseudo-ischemia/reperfusion in rabbit ventricular myocytes. J Mol Cell Cardiol 37:567–577CrossRefPubMedGoogle Scholar
  24. 24.
    Wakabayashi S, Bertrand B, Ikeda T, Pouysségur J, Shigekawa M (1994) Mutation of calmodulin-binding site renders the Na+/H+ exchanger (NHE1) highly H+-sensitive and Ca2+ regulation-defective. J Biol Chem 269:13710–13715PubMedGoogle Scholar
  25. 25.
    Wakabayashi S, Ikeda T, Iwamoto T, Pouysségur J, Shigekawa M (1997) Calmodulin-binding autoinhibitory domain controls “pH-sensing” in the Na+/H+ exchanger NHE1 through sequence-specific interaction. Biochemistry 36:12854–12861CrossRefPubMedGoogle Scholar
  26. 26.
    Moor AN, Fliegel L (1999) Protein kinase-mediated regulation of the Na+/H+ exchanger in the rat myocardium by mitogen-activated protein kinase-dependent pathways. J Biol Chem 274:22985–22992CrossRefPubMedGoogle Scholar
  27. 27.
    Robertson MA, Woodside M, Foskett JK, Orlowski J, Grinstein S (1997) Muscarinic agonists induce phosphorylation-independent activation of the NHE-1 isoform of the Na+/H+ antiporter in salivary acinar cells. J Biol Chem 272:287–294CrossRefPubMedGoogle Scholar
  28. 28.
    Ogawa Y, Fernley RT, Ito R, Ijuhin N (1998) Immunohistochemistry of carbonic anhydrase isozymes VI and II during development of the rat salivary glands. Histochem Cell Biol 110:81–88CrossRefPubMedGoogle Scholar
  29. 29.
    Peagler FD, Redman RS, McNutt RL, Kruse DH, Johansson I (1998) Enzyme histochemical and immunohistochemical localization of carbonic anhydrase as a marker of ductal differentiation in the developing rat parotid gland. Anat Rec 250:190–198CrossRefPubMedGoogle Scholar
  30. 30.
    Ditte P, Dequiedt F, Svastova E, Hulikova A, Ohradanova-Repic A, Zatovicova M, Csaderova L, Kopacek J, Supuran CT, Pastorekova S, Pastorek J (2011) Phosphorylation of carbonic anhydrase IX controls its ability to mediate extracellular acidification in hypoxic tumors. Cancer Res 71:7558–7567CrossRefPubMedGoogle Scholar
  31. 31.
    Shintani T, Hirono C, Sugita M, Iwasa Y, Shiba Y (2008) Suppression of carbachol-induced oscillatory Cl secretion by forskolin in rat parotid and submandibular acinar cells. Am J Physiol Gastrointest Liver Physiol 294:G738–G747CrossRefPubMedGoogle Scholar
  32. 32.
    Ma T, Thiagarajah JR, Yang H, Sonawane ND, Folli C, Galietta LJV, Verkman AS (2002) Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J Clin Invest 110:1651–1658CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Shitara A, Tanimura A, Nezu A, Morita T, Tojyo Y (2007) Multi-photon microscopic imaging of rat parotid ducts demonstrates cellular heterogeneity in Ca2+ responsiveness. Arch Oral Biol 52:1072–1078CrossRefPubMedGoogle Scholar
  34. 34.
    Zeng W, Lee MG, Muallem S (1997) Membrane-specific regulation of Cl channels by purinergic receptors in rat submandibular gland acinar and duct cells. J Biol Chem 272:32956–32965CrossRefPubMedGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Physiology and Oral Physiology, Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan

Personalised recommendations