The Journal of Physiological Sciences

, Volume 66, Issue 5, pp 367–374 | Cite as

The suprachiasmatic nucleus: age-related decline in biological rhythms

  • Takahiro J. Nakamura
  • Nana N. Takasu
  • Wataru Nakamura


Aging is associated with changes in sleep duration and quality, as well as increased rates of pathologic/disordered sleep. While several factors contribute to these changes, emerging research suggests that age-related changes in the mammalian central circadian clock within the suprachiasmatic nucleus (SCN) may be a key factor. Prior work from our group suggests that circadian output from the SCN declines because of aging. Furthermore, we have previously observed age-related infertility in female mice, caused by a mismatch between environmental light–dark cycles and the intrinsic, internal biological clocks. In this review, we address regulatory mechanisms underlying circadian rhythms in mammals and summarize recent literature describing the effects of aging on the circadian system.


Circadian rhythm Suprachiasmatic nucleus Aging Estrous cycle Infertility 



Suprachiasmatic nucleus


Subparaventricular zone




Constant dark


Circadian time


Multi-unit neural activity


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


This work was supported by JSPS KAKENHI Grant Numbers 26462809, 26860160, 26861780. N.N.T. is a research fellow of the Japan Society for the Promotion of Science.


  1. 1.
    Nakamura TJ, Nakamura W, Yamazaki S, Kudo T, Cutler T, Colwell CS, Block GD (2011) Age-related decline in circadian output. J Neurosci 31:10201–10205CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kawakami F, Okamura H, Tamada Y, Maebayashi Y, Fukui K, Ibata Y (1997) Loss of day–night differences in VIP mRNA levels in the suprachiasmatic nucleus of aged rats. Neurosci Lett 222:99–102CrossRefPubMedGoogle Scholar
  3. 3.
    Wise PM, Cohen IR, Weiland NG, London ED (1988) Aging alters the circadian rhythm of glucose utilization in the suprachiasmatic nucleus. Proc Natl Acad Sci USA 85:5305–5309CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cai A, Scarbrough K, Hinkle DA, Wise PM (1997) Fetal grafts containing suprachiasmatic nuclei restore the diurnal rhythm of CRH and POMC mRNA in aging rats. Am J Physiol 273:R1764–R1770PubMedGoogle Scholar
  5. 5.
    Li H, Satinoff E (1998) Fetal tissue containing the suprachiasmatic nucleus restores multiple circadian rhythms in old rats. Am J Physiol 275:R1735–R1744PubMedGoogle Scholar
  6. 6.
    Van Reeth O, Zhang Y, Zee PC, Turek FW (1994) Grafting fetal suprachiasmatic nuclei in the hypothalamus of old hamsters restores responsiveness of the circadian clock to a phase shifting stimulus. Brain Res 643:338–342CrossRefPubMedGoogle Scholar
  7. 7.
    Viswanathan N, Davis FC (1995) Suprachiasmatic nucleus grafts restore circadian function in aged hamsters. Brain Res 686:10–16CrossRefPubMedGoogle Scholar
  8. 8.
    Munetomo A, Hojo Y, Higo S, Kato A, Yoshida K, Shirasawa T, Shimizu T, Barron A, Kimoto T, Kawato S (2015) Aging-induced changes in sex-steroidogenic enzymes and sex-steroid receptors in the cortex, hypothalamus and cerebellum. J Physiol Sci 65:253–263CrossRefPubMedGoogle Scholar
  9. 9.
    Everett JW, Sawyer CH (1950) A 24-hour periodicity in the “LH-release apparatus” of female rats, disclosed by barbiturate sedation. Endocrinology 47:198–218CrossRefPubMedGoogle Scholar
  10. 10.
    Takasu NN, Nakamura TJ, Tokuda IT, Todo T, Block GD, Nakamura W (2015) Recovery from age-related infertility under environmental light-dark adjusted to the intrinsic circadian period. Cell Rep 12:1407–1413CrossRefPubMedGoogle Scholar
  11. 11.
    Meyer-Bernstein EL, Jetton AE, Matsumoto SI, Markuns JF, Lehman MN, Bittman EL (1999) Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 140:207–218PubMedGoogle Scholar
  12. 12.
    Pittendrigh C, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents. J Comp Physiol 106:223–252CrossRefGoogle Scholar
  13. 13.
    Refinetti R (2015) Comparison of light, food, and temperature as environmental synchronizers of the circadian rhythm of activity in mice. J Physiol Sci 65:359–366CrossRefPubMedGoogle Scholar
  14. 14.
    Daan S, Pittendrigh C (1976) A Functional analysis of circadian pacemakers in nocturnal rodents. J Comp Physiol 106:253–266CrossRefGoogle Scholar
  15. 15.
    Honma K, Honma S, Hiroshige T (1985) Response curve, free-running period, and activity time in circadian locomotor rhythm of rats. Jpn J Physiol 35:643–658CrossRefPubMedGoogle Scholar
  16. 16.
    Honma K, Honma S (1988) A human phase response curve for bright light pulses. Jpn J Psychiatr Neurol 42:167–168Google Scholar
  17. 17.
    Minors DS, Waterhouse JM, Wirz-Justice A (1991) A human phase-response curve to light. Neurosci Lett 133:36–40CrossRefPubMedGoogle Scholar
  18. 18.
    Bliwise DL (1993) Sleep apnea and cognitive function: where do we stand now? Sleep 16:S72–S73PubMedGoogle Scholar
  19. 19.
    Turek FW, Penev P, Zhang Y, van Reeth O, Zee P (1995) Effects of age on the circadian system. Neurosci Biobehav Rev 19:53–58CrossRefPubMedGoogle Scholar
  20. 20.
    Van Someren EJ (2000) Circadian and sleep disturbances in the elderly. Exp Gerontol 35:1229–1237CrossRefPubMedGoogle Scholar
  21. 21.
    Pittendrigh CS, Daan S (1974) Circadian oscillations in rodents: a systematic increase of their frequency with age. Science 186:548–550CrossRefPubMedGoogle Scholar
  22. 22.
    Scarbrough K, Losee-Olson S, Wallen EP, Turek FW (1997) Aging and photoperiod affect entrainment and quantitative aspects of locomotor behavior in Syrian hamsters. Am J Physiol 272:R1219–R1225PubMedGoogle Scholar
  23. 23.
    Valentinuzzi VS, Scarbrough K, Takahashi JS, Turek FW (1997) Effects of aging on the circadian rhythm of wheel-running activity in C57BL/6 mice. Am J Physiol 273:R1957–R1964PubMedGoogle Scholar
  24. 24.
    Zhang Y, Kornhauser JM, Zee PC, Mayo KE, Takahashi JS, Turek FW (1996) Effects of aging on light-induced phase-shifting of circadian behavioral rhythms, fos expression and CREB phosphorylation in the hamster suprachiasmatic nucleus. Neuroscience 70:951–961CrossRefPubMedGoogle Scholar
  25. 25.
    Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69:1583–1586CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Drucker-Colín R, Aguilar-Roblero R, García-Hernández F, Fernández-Cancino F, Rattoni FB (1984) Fetal suprachiasmatic nucleus transplants: diurnal rhythm recovery of lesioned rats. Brain Res 311:353–357CrossRefPubMedGoogle Scholar
  27. 27.
    Sawaki Y, Nihonmatsu I, Kawamura H (1984) Transplantation of the neonatal suprachiasmatic nuclei into rats with complete bilateral suprachiasmatic lesions. Neurosci Res 1:67–72CrossRefPubMedGoogle Scholar
  28. 28.
    Sujino M, Masumoto KH, Yamaguchi S, van der Horst GT, Okamura H, Inouye ST (2003) Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr Biol 13:664–668CrossRefPubMedGoogle Scholar
  29. 29.
    Ralph MR, Menaker M (1988) A mutation of the circadian system in golden hamsters. Science 241:1225–1227CrossRefPubMedGoogle Scholar
  30. 30.
    Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978CrossRefPubMedGoogle Scholar
  31. 31.
    Silver R, LeSauter J, Tresco PA, Lehman MN (1996) A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382:810–813CrossRefPubMedGoogle Scholar
  32. 32.
    Vogelbaum MA, Menaker M (1992) Temporal chimeras produced by hypothalamic transplants. J Neurosci 12:3619–3627PubMedGoogle Scholar
  33. 33.
    King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL et al (1997) Positional cloning of the mouse circadian clock gene. Cell 89:641–653CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tei H, Okamura H, Shigeyoshi Y, Fukuhara C, Ozawa R, Hirose M, Sakaki Y (1997) Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389:512–516CrossRefPubMedGoogle Scholar
  35. 35.
    Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697–706CrossRefPubMedGoogle Scholar
  36. 36.
    Honma S, Nakamura W, Shirakawa T, Honma K (2004) Diversity in the circadian periods of single neurons of the rat suprachiasmatic nucleus depends on nuclear structure and intrinsic period. Neurosci Lett 358:173–176CrossRefPubMedGoogle Scholar
  37. 37.
    Honma S, Shirakawa T, Nakamura W, Honma K (2000) Synaptic communication of cellular oscillations in the rat suprachiasmatic neurons. Neurosci Lett 294:113–116CrossRefPubMedGoogle Scholar
  38. 38.
    Nakamura W, Honma S, Shirakawa T, Honma K (2001) Regional pacemakers composed of multiple oscillator neurons in the rat suprachiasmatic nucleus. Eur J Neurosci 14:666–674CrossRefPubMedGoogle Scholar
  39. 39.
    Nakamura W, Honma S, Shirakawa T, Honma K (2002) Clock mutation lengthens the circadian period without damping rhythms in individual SCN neurons. Nat Neurosci 5:399–400PubMedGoogle Scholar
  40. 40.
    Schwartz WJ, Gross RA, Morton MT (1987) The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker. Proc Natl Acad Sci USA 84:1694–1698CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Nakamura W, Yamazaki S, Nakamura TJ, Shirakawa T, Block GD, Takumi T (2008) In vivo monitoring of circadian timing in freely moving mice. Curr Biol 18:381–385CrossRefPubMedGoogle Scholar
  42. 42.
    Cheng MY, Bullock CM, Li C, Lee AG, Bermak JC, Belluzzi J, Weaver DR, Leslie FM, Zhou QY (2002) Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417:405–410CrossRefPubMedGoogle Scholar
  43. 43.
    Kramer A, Yang FC, Snodgrass P, Li X, Scammell TE, Davis FC, Weitz CJ (2001) Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294:2511–2515CrossRefPubMedGoogle Scholar
  44. 44.
    Kraves S, Weitz CJ (2006) A role for cardiotrophin-like cytokine in the circadian control of mammalian locomotor activity. Nat Neurosci 9:212–219CrossRefPubMedGoogle Scholar
  45. 45.
    Vujovic N, Gooley JJ, Jhou TC, Saper CB (2015) Projections from the subparaventricular zone define four channels of output from the circadian timing system. J Comp Neurol 523:2714–2737CrossRefPubMedGoogle Scholar
  46. 46.
    Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–1263CrossRefPubMedGoogle Scholar
  47. 47.
    Lu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, Shiromani P, Saper CB (2001) Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. J Neurosci 21:4864–4874PubMedPubMedCentralGoogle Scholar
  48. 48.
    Nakamura TJ, Nakamura W, Tokuda IT, Ishikawa T, Kudo T, Colwell CS, Block GD (2015) Age-related changes in the circadian system unmasked by constant conditions. eNeuro. doi: 10.1523/ENEURO.0064-15.2015 PubMedPubMedCentralGoogle Scholar
  49. 49.
    Tanaka M, Yamaguchi E, Takahashi M, Hashimura K, Shibata T, Nakamura W, Nakamura TJ (2012) Effects of age-related dopaminergic neuron loss in the substantia nigra on the circadian rhythms of locomotor activity in mice. Neurosci Res 74:210–215CrossRefPubMedGoogle Scholar
  50. 50.
    Butcher RL, Collins WE, Fugo NW (1974) Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-17beta throughout the 4-day estrous cycle of the rat. Endocrinology 94:1704–1708CrossRefPubMedGoogle Scholar
  51. 51.
    Wollnik F, Turek FW (1988) Estrous correlated modulations of circadian and ultradian wheel-running activity rhythms in LEW/Ztm rats. Physiol Behav 43:389–396CrossRefPubMedGoogle Scholar
  52. 52.
    Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685CrossRefPubMedGoogle Scholar
  53. 53.
    Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ et al (2004) PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues USA. Proc Natl Acad Sci USA 101:5339–5346CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Chappell PE, White RS, Mellon PL (2003) Circadian gene expression regulates pulsatile gonadotropin-releasing hormone (GnRH) secretory patterns in the hypothalamic GnRH-secreting GT1-7 cell line. J Neurosci 23:11202–11213PubMedPubMedCentralGoogle Scholar
  55. 55.
    Sellix MT, Menaker M (2010) Circadian clocks in the ovary. Trends Endocrinol Metab 21:628–636CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Nakamura TJ, Sellix MT, Kudo T, Nakao N, Yoshimura T, Ebihara S, Colwell CS, Block GD (2010) Influence of the estrous cycle on clock gene expression in reproductive tissues: effects of fluctuating ovarian steroid hormone levels. Steroids 75:203–212CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Nakamura TJ, Moriya T, Inoue S, Shimazoe T, Watanabe S, Ebihara S, Shinohara K (2005) Estrogen differentially regulates expression of Per1 and Per2 genes between central and peripheral clocks and between reproductive and nonreproductive tissues in female rats. J Neurosci Res 82:622–630CrossRefPubMedGoogle Scholar
  58. 58.
    Nakamura TJ, Sellix MT, Menaker M, Block GD (2008) Estrogen directly modulates circadian rhythms of PER2 expression in the uterus. Am J Physiol Endocrinol Metab 295:E1025–E1031CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Mishima K, Okawa M, Shimizu T, Hishikawa Y (2001) Diminished melatonin secretion in the elderly caused by insufficient environmental illumination. J Clin Endocrinol Metab 86:129–134PubMedGoogle Scholar
  60. 60.
    Takasu N, Nigi H, Tokura H (2002) Effects of diurnal bright/dim light intensity on circadian core temperature and activity rhythms in the Japanese macaque. Jpn J Physiol 52:573–578CrossRefPubMedGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Takahiro J. Nakamura
    • 1
  • Nana N. Takasu
    • 2
  • Wataru Nakamura
    • 2
  1. 1.Department of Life Sciences, School of AgricultureMeiji UniversityKawasakiJapan
  2. 2.Laboratory of Oral Chronobiology, Graduate School of DentistryOsaka UniversitySuitaJapan

Personalised recommendations