Advertisement

The Journal of Physiological Sciences

, Volume 66, Issue 4, pp 345–357 | Cite as

Effects of icing or heat stress on the induction of fibrosis and/or regeneration of injured rat soleus muscle

  • Tsubasa ShibaguchiEmail author
  • Takao Sugiura
  • Takanori Fujitsu
  • Takumi Nomura
  • Toshinori Yoshihara
  • Hisashi Naito
  • Toshitada Yoshioka
  • Akihiko Ogura
  • Yoshinobu Ohira
Original Paper

Abstract

The effects of icing or heat stress on the regeneration of injured soleus muscle were investigated in male Wistar rats. Bupivacaine was injected into soleus muscles bilaterally to induce muscle injury. Icing (0 °C, 20 min) was carried out immediately after the injury. Heat stress (42 °C, 30 min) was applied every other day during 2–14 days after the bupivacaine injection. Injury-related increase in collagen deposition was promoted by icing. However, the level of collagen deposition in heat-stressed animals was maintained at control levels throughout the experimental period and was significantly lower than that in icing-treated animals at 15 and 28 days after bupivacaine injection. Furthermore, the recovery of muscle mass, protein content, and muscle fiber size of injured soleus toward control levels was partially facilitated by heat stress. These results suggest that, compared with icing, heat stress may be a beneficial treatment for successful muscle regeneration at least by reducing fibrosis.

Keywords

Muscle regeneration Fibrosis Heat stress Icing Satellite cell Heat shock protein 72 

Notes

Acknowledgments

We thank Miss Mizuki Hoshi and Miss Misaki Munemura for their technical assistance. This study was supported by the Grant-in-Aid for Scientific Research (C-24500789 by T. Sugiura) from Japan Society for the Promotion of Science.

Author contributions

Conception and design of research: T. Shibaguchi, T. Sugiura, and Y.O. Performed experiments: T. Shibaguchi, T. Sugiura, T.F., and T.N. Analyzed data: T. Shibaguchi, T. Sugiura, T.F., and T.N. Interpreted results of experiments: T. Shibaguchi, T. Sugiura, T. Yoshihara, H.N., T. Yoshioka., A.O., and Y.O. Prepared figures: T. Shibaguchi, T. Sugiura, and Y.O. Drafted manuscript: T. Shibaguchi, T. Sugiura, and Y.O. Edited and revised manuscript: T. Shibaguchi, T. Sugiura, and Y.O. Approved final version of manuscript: All authors.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    Huard J, Li Y, Fu FH (2002) Muscle injuries and repair: current trends in research. J Bone Joint Surg Am 84-A:822–832PubMedGoogle Scholar
  2. 2.
    Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298:R1173–R1187CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204:1057–1069CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bencze M, Negroni E, Vallese D, Yacoub-Youssef H, Chaouch S, Wolff A, Aamiri A, Di Santo JP, Chazaud B, Butler-Browne G, Savino W, Mouly V, Riederer I (2012) Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation. Mol Ther 20:2168–2179CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chargé SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238CrossRefPubMedGoogle Scholar
  7. 7.
    Ciciliot S, Schiaffino S (2010) Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr Pharm Des 16:906–914CrossRefPubMedGoogle Scholar
  8. 8.
    Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551PubMedGoogle Scholar
  9. 9.
    Segawa M, Fukada S, Yamamoto Y, Yahagi H, Kanematsu M, Sato M, Ito T, Uezumi A, Hayashi S, Miyagoe-Suzuki Y, Takeda S, Tsujikawa K, Yamamoto H (2008) Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis. Exp Cell Res 314:3232–3244CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang L, Ran L, Garcia GE, Wang XH, Han S, Du J, Mitch WE (2009) Chemokine CXCL16 regulates neutrophil and macrophage infiltration into injured muscle, promoting muscle regeneration. Am J Pathol 175:2518–2527CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–3637CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA (2013) Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci USA 110:16474–16479CrossRefGoogle Scholar
  13. 13.
    Ohira T, Wang XD, Ito T, Kawano F, Goto K, Izawa T, Ohno H, Kizaki T, Ohira Y (2015) Macrophage deficiency in osteopetrotic (op/op) mice inhibits activation of satellite cells and prevents hypertrophy in single soleus fibers. Am J Physiol Cell Physiol 308:C848–C855CrossRefPubMedGoogle Scholar
  14. 14.
    Knight KL (1995) Cryotherapy in sport injury management. Human Kinetics, PortlandGoogle Scholar
  15. 15.
    Merrick MA (2002) Secondary injury after musculoskeletal trauma: a review and update. J Athl Train 37:209–217PubMedPubMedCentralGoogle Scholar
  16. 16.
    Hubbard TJ, Aronson SL, Denegar CR (2004) Does cryotherapy hasten return to participation? A systematic review. J Athl Train 39:88–94PubMedPubMedCentralGoogle Scholar
  17. 17.
    Takagi R, Fujita N, Arakawa T, Kawada S, Ishii N, Miki A (2011) Influence of icing on muscle regeneration after crush injury to skeletal muscles in rats. J Appl Physiol 110:382–388CrossRefPubMedGoogle Scholar
  18. 18.
    Allen RE, Boxhorn LK (1987) Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor-beta. J Cell Physiol 133:567–572CrossRefPubMedGoogle Scholar
  19. 19.
    Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y, Cummins J, Huard J (2004) Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol 164:1007–1019CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ito T, Fujiya H, Goto K, Ogura Y, Kurosaka M, Yatabe K, Kishiro S, Yoshida A, Yoshioka H, Terauchi K, Beppu M, Funabashi T, Akema T, Musha H (2013) Icing at early stage depresses skeletal muscle regeneration. J St Marianna Univ 4:61–67Google Scholar
  21. 21.
    Kojima A, Goto K, Morioka S, Naito T, Akema T, Fujiya H, Sugiura T, Ohira Y, Beppu M, Aoki H, Yoshioka T (2007) Heat stress facilitates the regeneration of injured skeletal muscle in rats. J Orthop Sci 12:74–82CrossRefPubMedGoogle Scholar
  22. 22.
    Oishi Y, Hayashida M, Tsukiashi S, Taniguchi K, Kami K, Roy RR, Ohira Y (2009) Heat stress increases myonuclear number and fiber size via satellite cell activation in rat regenerating soleus fibers. J Appl Physiol 107:1612–1621CrossRefPubMedGoogle Scholar
  23. 23.
    Takeuchi K, Hatade T, Wakamiya S, Fujita N, Arakawa T, Miki A (2014) Heat stress promotes skeletal muscle regeneration after crush injury in rats. Acta Histochem 116:327–334CrossRefPubMedGoogle Scholar
  24. 24.
    Naito H, Powers SK, Demirel HA, Sugiura T, Dodd SL, Aoki J (2000) Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. J Appl Physiol 88:359–363PubMedGoogle Scholar
  25. 25.
    Selsby JT, Dodd SL (2005) Heat treatment reduces oxidative stress and protects muscle mass during immobilization. Am J Physiol Regul Integr Comp Physiol 289:R134–R139CrossRefPubMedGoogle Scholar
  26. 26.
    Goto K, Honda M, Kobayashi T, Uehara K, Kojima A, Akema T, Sugiura T, Yamada S, Ohira Y, Yoshioka T (2004) Heat stress facilitates the recovery of atrophied soleus muscle in rat. Jpn J Physiol 54:285–293CrossRefPubMedGoogle Scholar
  27. 27.
    Selsby JT, Rother S, Tsuda S, Pracash O, Quindry J, Dodd SL (2007) Intermittent hyperthermia enhances skeletal muscle regrowth and attenuates oxidative damage following reloading. J Appl Physiol 102:1702–1707CrossRefPubMedGoogle Scholar
  28. 28.
    Uehara K, Goto K, Kobayashi T, Kojima A, Akema T, Sugiura T, Yamada S, Ohira Y, Yoshioka T, Aoki H (2004) Heat-stress enhances proliferative potential in rat soleus muscle. Jpn J Physiol 54:263–271CrossRefPubMedGoogle Scholar
  29. 29.
    Kobayashi T, Goto K, Kojima A, Akema T, Uehara K, Aoki H, Sugiura T, Ohira Y, Yoshioka T (2005) Possible role of calcineurin in heating-related increase of rat muscle mass. Biochem Biophys Res Commun 331:1301–1309CrossRefPubMedGoogle Scholar
  30. 30.
    Ohno Y, Yamada S, Sugiura T, Ohira Y, Yoshioka T, Goto K (2010) A possible role of NF-kappaB and HSP72 in skeletal muscle hypertrophy induced by heat stress in rats. Gen Physiol Biophys 29:234–242CrossRefPubMedGoogle Scholar
  31. 31.
    Locke M (1997) The cellular stress response to exercise: role of stress proteins. Exerc Sport Sci Rev 25:105–136CrossRefPubMedGoogle Scholar
  32. 32.
    Kilgore JL, Musch TI, Ross CR (1998) Physical activity, muscle, and the HSP70 response. Can J Appl Physiol 23:245–260CrossRefPubMedGoogle Scholar
  33. 33.
    Yoshihara T, Naito H, Kakigi R, Ichinoseki-Sekine N, Ogura Y, Sugiura T, Katamoto S (2013) Heat stress activates the Akt/mTOR signalling pathway in rat skeletal muscle. Acta Physiol (Oxf) 207:416–426CrossRefGoogle Scholar
  34. 34.
    Ogata T, Oishi Y, Ohmori H (2002) Changes in heat shock protein 72 of regenerating rat skeletal muscle. Jpn J Phys Fit Sports Med 51:75–84 (in Japanese) CrossRefGoogle Scholar
  35. 35.
    Orimo S, Hiyamuta E, Arahata K, Sugita H (1991) Analysis of inflammatory cells and complement C3 in bupivacaine-induced myonecrosis. Muscle Nerve 14:515–520CrossRefPubMedGoogle Scholar
  36. 36.
    Solaro RJ, Pang DC, Briggs FN (1971) The purification of cardiac myofibrils with Triton X-100. Biochim Biophys Acta 245:259–262CrossRefPubMedGoogle Scholar
  37. 37.
    Kim JH, Kwak HB, Leeuwenburgh C, Lawler JM (2008) Lifelong exercise and mild (8%) caloric restriction attenuate age-induced alterations in plantaris muscle morphology, oxidative stress and IGF-1 in the Fischer-344 rat. Exp Gerontol 43:317–329CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Papadopulos F, Spinelli M, Valente S, Foroni L, Orrico C, Alviano F, Pasquinelli G (2007) Common tasks in microscopic and ultrastructural image analysis using ImageJ. Ultrastruct Pathol 31:401–407CrossRefPubMedGoogle Scholar
  39. 39.
    Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, Muñoz-Cánoves P (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1:21CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Fukushima K, Badlani N, Usas A, Riano F, Fu F, Huard J (2001) The use of an antifibrosis agent to improve muscle recovery after laceration. Am J Sports Med 29:394–402PubMedGoogle Scholar
  41. 41.
    Sato K, Li Y, Foster W, Fukushima K, Badlani N, Adachi N, Usas A, Fu FH, Huard J (2003) Improvement of muscle healing through enhancement of muscle regeneration and prevention of fibrosis. Muscle Nerve 28:365–372CrossRefPubMedGoogle Scholar
  42. 42.
    Hwang JH, Ra YJ, Lee KM, Lee JY, Ghil SH (2006) Therapeutic effect of passive mobilization exercise on improvement of muscle regeneration and prevention of fibrosis after laceration injury of rat. Arch Phys Med Rehabil 87:20–26CrossRefPubMedGoogle Scholar
  43. 43.
    Novak ML, Weinheimer-Haus EM, Koh TJ (2014) Macrophage activation and skeletal muscle healing following traumatic injury. J Pathol 232:344–355CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cannon JG, St Pierre BA (1998) Cytokines in exertion-induced skeletal muscle injury. Mol Cell Biochem 179:159–167CrossRefPubMedGoogle Scholar
  45. 45.
    Bernasconi P, Torchiana E, Confalonieri P, Brugnoni R, Barresi R, Mora M, Cornelio F, Morandi L, Mantegazza R (1995) Expression of transforming growth factor-beta 1 in dystrophic patient muscles correlates with fibrosis. Pathogenetic role of a fibrogenic cytokine. J Clin Invest 96:1137–1144CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Pessina P, Cabrera D, Morales MG, Riquelme CA, Gutiérrez J, Serrano AL, Brandan E, Muñoz-Cánoves P (2014) Novel and optimized strategies for inducing fibrosis in vivo: focus on Duchenne Muscular Dystrophy. Skelet Muscle 4:7CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786CrossRefPubMedGoogle Scholar
  48. 48.
    Kuang S, Chargé SB, Seale P, Huh M, Rudnicki MA (2006) Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol 172:103–113CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Oustanina S, Hause G, Braun T (2004) Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J 23:3430–3439CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, Mansouri A, Cumano A, Buckingham M (2006) Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172:91–102CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Song E, Ouyang N, Hörbelt M, Antus B, Wang M, Exton MS (2000) Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol 204:19–28CrossRefPubMedGoogle Scholar
  52. 52.
    Matsuba Y, Goto K, Morioka S, Naito T, Akema T, Hashimoto N, Sugiura T, Ohira Y, Beppu M, Yoshioka T (2009) Gravitational unloading inhibits the regenerative potential of atrophied soleus muscle in mice. Acta Physiol (Oxf) 196:329–339CrossRefGoogle Scholar
  53. 53.
    Morioka S, Goto K, Kojima A, Naito T, Matsuba Y, Akema T, Fujiya H, Sugiura T, Ohira Y, Beppu M, Aoki H, Yoshioka T (2008) Functional overloading facilitates the regeneration of injured soleus muscles in mice. J Physiol Sci 58:397–404CrossRefPubMedGoogle Scholar
  54. 54.
    Naito T, Goto K, Morioka S, Matsuba Y, Akema T, Sugiura T, Ohira Y, Beppu M, Yoshioka T (2009) Administration of granulocyte colony-stimulating factor facilitates the regenerative process of injured mice skeletal muscle via the activation of Akt/GSK3alphabeta signals. Eur J Appl Physiol 105:643–651CrossRefPubMedGoogle Scholar
  55. 55.
    Fry CS, Lee JD, Jackson JR, Kirby TJ, Stasko SA, Liu H, Dupont-Versteegden EE, McCarthy JJ, Peterson CA (2014) Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. FASEB J 28:1654–1665CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Senf SM, Howard TM, Ahn B, Ferreira LF, Judge AR (2013) Loss of the inducible Hsp70 delays the inflammatory response to skeletal muscle injury and severely impairs muscle regeneration. PLoS ONE 8:e62687CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Gehrig SM, van der Poel C, Sayer TA, Schertzer JD, Henstridge DC, Church JE, Lamon S, Russell AP, Davies KE, Febbraio MA, Lynch GS (2012) Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature 484:394–398CrossRefPubMedGoogle Scholar
  58. 58.
    Locke M, Celotti C (2001) Cold stress does not induce stress proteins SP 25 and SP 72 in rat skeletal muscle. Cryobiology 43:54–62CrossRefPubMedGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Tsubasa Shibaguchi
    • 1
    Email author
  • Takao Sugiura
    • 2
  • Takanori Fujitsu
    • 2
  • Takumi Nomura
    • 2
  • Toshinori Yoshihara
    • 3
  • Hisashi Naito
    • 3
  • Toshitada Yoshioka
    • 4
  • Akihiko Ogura
    • 1
  • Yoshinobu Ohira
    • 5
  1. 1.Graduate School of Frontier BiosciencesOsaka UniversityToyonaka CityJapan
  2. 2.Department of Exercise and Health Sciences, Faculty of EducationYamaguchi UniversityYamaguchi CityJapan
  3. 3.Graduate School of Health and Sports ScienceJuntendo UniversityInzai CityJapan
  4. 4.Hirosaki Gakuin UniversityHirosaki CityJapan
  5. 5.Graduate School of Health and Sports ScienceDoshisha UniversityKyotanabe CityJapan

Personalised recommendations