Advertisement

The Journal of Physiological Sciences

, Volume 66, Issue 2, pp 99–104 | Cite as

Activity-dependent regulation of excitable axonal domains

  • Keiichiro SusukiEmail author
  • Hiroshi KubaEmail author
Mini-review

Abstract

Rapid action potential propagation along myelinated axons requires voltage-gated Na+ channel clustering at the axon initial segments (AISs) and nodes of Ranvier. The AIS is intrinsically defined by cytoskeletal proteins expressed in axons, whereas nodes of Ranvier are formed by interaction between neurons and myelinating glia. These axonal domains have long been considered stable structures, but recent studies revealed that they are plastic and contribute to fine adjustment of neuronal activities and circuit function. The AIS changes its distribution and maintains neural circuit activity at a constant level. Morphological changes in myelinated nerve structures presumably modulate the excitability of nodal regions and regulate the timing of activity, thereby optimizing signal processing in a neural circuit. This review highlights recent findings on the structural plasticity of these excitable axonal domains.

Keywords

Axon initial segment Node of Ranvier Myelin Neuronal activity Plasticity Ion channel 

Notes

Acknowledgments

The authors thank Dr. Debra A. Mayes (Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH) for meaningful discussions. This work was supported by grants-in-aid from MEXT (22680032 and 15H04257), the Uehara Memorial Foundation, and the JST PRESTO program to H.K.

Compliance with ethical standards

Conflict of interest

We declare no conflict of interest.

References

  1. 1.
    Normand EA, Rasband MN (2015) Subcellular patterning: axonal domains with specialized structure and function. Dev Cell 32:459–468CrossRefPubMedGoogle Scholar
  2. 2.
    Buffington SA, Rasband MN (2011) The axon initial segment in nervous system disease and injury. Eur J Neurosci 34:1609–1619PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Susuki K (2013) Node of Ranvier disruption as a cause of neurological diseases. ASN Neuro 5:209–219CrossRefPubMedGoogle Scholar
  4. 4.
    Jenkins SM, Bennett V (2001) Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments. J Cell Biol 155:739–746PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Galiano MR, Jha S, Ho TS et al (2012) A distal axonal cytoskeleton forms an intra-axonal boundary that controls axon initial segment assembly. Cell 149:1125–1139PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Susuki K, Chang KJ, Zollinger DR et al (2013) Three mechanisms assemble central nervous system nodes of Ranvier. Neuron 78:469–482PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Kuba H, Oichi Y, Ohmori H (2010) Presynaptic activity regulates Na+ channel distribution at the axon initial segment. Nature 465:1075–1078CrossRefPubMedGoogle Scholar
  8. 8.
    Grubb MS, Burrone J (2010) Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465:1070–1074PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Chand AN, Galliano E, Chesters RA, Grubb MS (2015) A distinct subtype of dopaminergic interneuron displays inverted structural plasticity at the axon initial segment. J Neurosci 35:1573–1590PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Kaphzan H, Buffington SA, Jung JI, Rasband MN, Klann E (2011) Alterations in intrinsic membrane properties and the axon initial segment in a mouse model of Angelman syndrome. J Neurosci 31:17637–17648PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Baalman KL, Cotton RJ, Rasband SN, Rasband MN (2013) Blast wave exposure impairs memory and decreases axon initial segment length. J Neurotrauma 30:741–751PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Harty RC, Kim TH, Thomas EA et al (2013) Axon initial segment structural plasticity in animal models of genetic and acquired epilepsy. Epilepsy Res 105:272–279CrossRefPubMedGoogle Scholar
  13. 13.
    Hamada MS, Kole MH (2015) Myelin loss and axonal ion channel adaptations associated with gray matter neuronal hyperexcitability. J Neurosci 35:7272–7286PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Cruz DA, Lovallo EM, Stockton S, Rasband M, Lewis DA (2009) Postnatal development of synaptic structure proteins in pyramidal neuron axon initialsegments in monkey prefrontal cortex. J Comp Neurol 514:353–367PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Gutzmann A, Ergül N, Grossmann R et al (2014) A period of structural plasticity at the axon initial segment in developing visual cortex. Front Neuroanat 8:11PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Kuba H, Adachi R, Ohmori H (2014) Activity-dependent and activity-independent development of the axon initial segment. J Neurosci 34:3443–3453CrossRefPubMedGoogle Scholar
  17. 17.
    Kuba H, Ishii TM, Ohmori H (2006) Axonal site of spike initiation enhances auditory coincidence detection. Nature 444:1069–1072CrossRefPubMedGoogle Scholar
  18. 18.
    Kuba H, Ohmori H (2009) Roles of axonal sodium channels in precise auditory time coding at nucleus magnocellularis of the chick. J Physiol 587:87–100PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Evans MD, Sammons RP, Lebron S et al (2013) Calcineurin signaling mediates activity-dependent relocation of the axon initial segment. J Neurosci 33:6950–6963PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Trunova S, Baek B, Giniger E (2011) Cdk5 regulates the size of an axon initial segment-like compartment in mushroom body neurons of the Drosophila central brain. J Neurosci 31:10451–10462PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Yoshimura T, Rasband MN (2014) Axon initial segments: diverse and dynamic neuronal compartments. Curr Opin Neurobiol 27:96–102CrossRefPubMedGoogle Scholar
  22. 22.
    Petersen SC, Monk KR (2015) Neurobiology: myelin goes where the action is. Curr Biol 25:R562–R565CrossRefPubMedGoogle Scholar
  23. 23.
    Toritsuka M, Makinodan M, Kishimoto T (2015) Social experience-dependent myelination: an implication for psychiatric disorders. Neural Plast 2015:465345PubMedCentralPubMedGoogle Scholar
  24. 24.
    Wake H, Ortiz FC, Woo DH et al (2015) Nonsynaptic junctions on myelinating glia promote preferential myelination of electrically active axons. Nat Commun 6:7844PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Liu J, Dietz K, DeLoyht JM et al (2012) Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat Neurosci 15:1621–1623PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Yamazaki Y, Hozumi Y, Kaneko K et al (2007) Modulatory effects of oligodendrocytes on the conduction velocity of action potentials along axons in the alveus of the rat hippocampal CA1 region. Neuron Glia Biol 3:325–334CrossRefPubMedGoogle Scholar
  27. 27.
    Yamazaki Y, Fujiwara H, Kaneko K et al (2014) Short- and long-term functional plasticity of white matter induced by oligodendrocyte depolarization in the hippocampus. Glia 62:1299–1312CrossRefPubMedGoogle Scholar
  28. 28.
    Rosenbluth J (2009) Multiple functions of the paranodal junction of myelinated nerve fibers. J Neurosci Res 87:3250–3258CrossRefPubMedGoogle Scholar
  29. 29.
    Hirono M, Ogawa Y, Misono K et al (2015) BK channels localize to the paranodal junction and regulate action potentials in myelinated axons of cerebellar Purkinje cells. J Neurosci 35:7082–7094PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Waxman SG (1980) Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve 3:141–150CrossRefPubMedGoogle Scholar
  31. 31.
    Court FA, Sherman DL, Pratt T et al (2004) Restricted growth of Schwann cells lacking Cajal bands slows conduction in myelinated nerves. Nature 431:191–195CrossRefPubMedGoogle Scholar
  32. 32.
    Seidl AH, Rubel EW, Harris DM (2010) Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection. J Neurosci 30:70–80PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Seidl AH, Rubel EW, Barría A (2014) Differential conduction velocity regulation in ipsilateral and contralateral collaterals innervating brainstem coincidence detector neurons. J Neurosci 34:4914–4919PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Ford MC, Alexandrova O, Cossell L et al (2015) Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nat Commun 6:8073PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Tagoe T, Barker M, Jones A, Allcock N, Hamann M (2014) Auditory nerve perinodal dysmyelination in noise-induced hearing loss. J Neurosci 34:2684–2688CrossRefPubMedGoogle Scholar
  36. 36.
    Ohno N, Kidd GJ, Mahad D et al (2011) Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of Ranvier. J Neurosci 31:7249–7258PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2015

Authors and Affiliations

  1. 1.Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of MedicineWright State UniversityDaytonUSA
  2. 2.Department of Cell Physiology, Graduate School of MedicineNagoya UniversityNagoyaJapan
  3. 3.PRESTO, JSTSaitamaJapan

Personalised recommendations