Advertisement

The Journal of Physiological Sciences

, Volume 65, Issue 5, pp 435–443 | Cite as

Pre-ischemic exercise reduces apoptosis in hippocampal CA3 cells after cerebral ischemia by modulation of the Bax/Bcl-2 proteins ratio and prevention of caspase-3 activation

  • Nahid Aboutaleb
  • Nabi ShamsaeiEmail author
  • Mehdi Khaksari
  • Sohaila Erfani
  • Hamid Rajabi
  • Farnaz Nikbakht
Original Paper

Abstract

Ischemia induces physiological alterations in neurons that lead to cell death. This study investigated the effects of pre-ischemic exercise on CA3 neurons. Rats were divided into three groups. Animals in the exercise group were trained 5 days a week for 4 weeks. Ischemia was induced by occlusion of both common carotid arteries (CCAs) for 20 min. Apoptotic cell death was detected by TUNEL assay. Furthermore, expression of different proteins was determined by immunohistochemical staining. The number of TUNEL-positive cells was significantly increased in the ischemia group, but pre-ischemic exercise significantly reduced apoptotic cell death (P < 0.001). In addition, our results showed a significant increase in the Bax/Bcl-2 ratio in the ischemia group. Pre-ischemic exercise attenuated this ratio (P < 0.05). Furthermore, the number of active caspase-3-positive neurons was significantly increased in the ischemia group, which was reduced markedly by exercise preconditioning (P < 0.05). This study showed that pre-ischemic exercise can exert neuroprotective effects against ischemia in CA3 neurons.

Keywords

Exercise Ischemia Hippocampus Apoptosis 

Notes

Acknowledgments

This research was supported by a grant (contract no. 91052159) sponsored by the Iran National Science Foundation (INSF). The authors are very grateful to the INSF for financial support.

Conflict of interest

Nahid Aboutaleb, Nabi Shamsaei, Mehdi Khaksari, Sohaila Erfani, Hamid Rajabi and Farnaz Nikbakht declare that they have no conflict of interest.

References

  1. 1.
    Lee J-M, Zipfel GJ, Choi DW (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399:A7–A14CrossRefPubMedGoogle Scholar
  2. 2.
    Mitani A, Andou Y, Kataoka K (1992) Selective vulnerability of hippocampal CA1 neurons cannot be explained in terms of an increase in glutamate concentration during ischemia in the gerbil: brain microdialysis study. Neuroscience 48:307–313CrossRefPubMedGoogle Scholar
  3. 3.
    Erfani S, Khaksari M, Oryan S, Shamsaei N, Aboutaleb N, Nikbakht F et al (2015) Visfatin reduces hippocampal CA1 cells death and improves learning and memory deficits after transient global ischemia/reperfusion. Neuropeptides 49:63–68CrossRefPubMedGoogle Scholar
  4. 4.
    Hara H, Friedlander RM, Gagliardini V, Ayata C, Fink K, Huang Z et al (1997) Inhibition of interleukin 1β converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci 94:2007–2012PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Matsuo Y, Kihara T, Ikeda M, Ninomiya M, Onodera H, Kogure K (1995) Role of neutrophils in radical production during ischemia and reperfusion of the rat brain: effect of neutrophil depletion on extracellular ascorbyl radical formation. J Cereb Blood Flow Metab 15:941–947CrossRefPubMedGoogle Scholar
  6. 6.
    Hwang L, Choi I-Y, Kim S-E, Ko I-G, Shin M-S, Kim C-J et al (2013) Dexmedetomidine ameliorates intracerebral hemorrhage-induced memory impairment by inhibiting apoptosis and enhancing brain-derived neurotrophic factor expression in the rat hippocampus. Int J Mol Med 31:1047–1056PubMedGoogle Scholar
  7. 7.
    Chittenden T, Harrington EA, O’Connor R, Remington C, Lutz RJ, Evan GI et al (1995) Induction of apoptosis by the Bcl-2 homologue Bak 374:733–736Google Scholar
  8. 8.
    Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ (1995) Bad, a heterodimeric partner for Bcl-xL and Bcl-2, displaces Bax and promotes cell death. Cell 80:285–291CrossRefPubMedGoogle Scholar
  9. 9.
    Bredesen DE (1995) Neural apoptosis. Ann Neurol 38:839–851CrossRefPubMedGoogle Scholar
  10. 10.
    Gillardon F, Lenz C, Waschke K, Krajewski S, Reed J, Zimmermann M et al (1996) Altered expression of Bcl-2, Bcl-X, Bax, and c-Fos colocalizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats. Mol Brain Res 40:254–260CrossRefPubMedGoogle Scholar
  11. 11.
    Chen J, Zhu RL, Nakayama M, Kawaguchi K, Jin K, Stetler RA et al (1996) Expression of the apoptosis-effector gene, Bax, is up-regulated in vulnerable hippocampal CA1 neurons following global ischemia. J Neurochem 67:64–71CrossRefPubMedGoogle Scholar
  12. 12.
    Korsmeyer SJ (1995) Regulators of cell death. Trends Genet 11:101–105CrossRefPubMedGoogle Scholar
  13. 13.
    MacManus JP, Linnik MD (1997) Gene expression induced by cerebral ischemia: an apoptotic perspective. J Cereb Blood Flow Metab 17:815–832CrossRefPubMedGoogle Scholar
  14. 14.
    Merry D, Korsmeyer S (1997) Bcl-2 gene family in the nervous system. Annu Rev Neurosci 20:245–267CrossRefPubMedGoogle Scholar
  15. 15.
    Dolorfo CL, Amaral DG (1998) Entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. J Comp Neurol 398:25–48CrossRefPubMedGoogle Scholar
  16. 16.
    Florian C, Roullet P (2004) Hippocampal CA3-region is crucial for acquisition and memory consolidation in Morris water maze task in mice. Behav Brain Res 154:365–374CrossRefPubMedGoogle Scholar
  17. 17.
    Smith M-L, Auer R, Siesjö B (1984) The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol 64:319–332CrossRefPubMedGoogle Scholar
  18. 18.
    Liu G, Wang T, Wang T, Song J, Zhou Z (2013) Effects of apoptosis-related proteins caspase-3, Bax and Bcl-2 on cerebral ischemia rats. Biomed Rep 1:861–867PubMedCentralPubMedGoogle Scholar
  19. 19.
    Hao Z, Pan S-S, Shen Y-J, Ge J (2014) Exercise preconditioning-induced late phase of cardioprotection against exhaustive exercise: possible role of protein kinase C delta. J Physiol Sci 64:333–345CrossRefPubMedGoogle Scholar
  20. 20.
    Liebelt B, Papapetrou P, Ali A, Guo M, Ji X, Peng C et al (2010) Exercise preconditioning reduces neuronal apoptosis in stroke by up-regulating heat shock protein-70 (heat shock protein-72) and extracellular-signal-regulated-kinase 1/2. Neuroscience 166:1091–1100CrossRefPubMedGoogle Scholar
  21. 21.
    Moghaddasi M, Javanmard SH, Reisi P, Tajadini M, Taati M (2014) The effect of regular exercise on antioxidant enzyme activities and lipid peroxidation levels in both hippocampi after occluding one carotid in rat. J Physiol Sci 64:325–332CrossRefPubMedGoogle Scholar
  22. 22.
    Endo K, Matsukawa K, Liang N, Nakatsuka C, Tsuchimochi H, Okamura H et al (2013) Dynamic exercise improves cognitive function in association with increased prefrontal oxygenation. J Physiol Sci 63:287–298CrossRefPubMedGoogle Scholar
  23. 23.
    Seo T-B, Kim T-W, Shin M-S, Ji E-S, Cho H-S, Lee J-M et al (2014) Aerobic exercise alleviates ischemia-induced memory impairment by enhancing cell proliferation and suppressing neuronal apoptosis in hippocampus. Int Neurourol J 18:187–197PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Erfani S, Aboutaleb N, Oryan S, Shamsaei N, Khaksari M, Kalalian-Moghaddam H et al (2015) Visfatin inhibits apoptosis and necrosis of hippocampus CA3 cells following transient global ischemia/reperfusion in rats. Int J Pept Res Ther 21:223–228CrossRefGoogle Scholar
  25. 25.
    Paxinos G, Watson C. The rat brain in stereotaxic coordinates: hard cover edition: Academic press, London; 2006Google Scholar
  26. 26.
    Aboutaleb N, Kalalianmoghaddam H, Eftekhari S, Shahbazi A, Abbaspour H, Khaksari M (2014) Apelin-13 inhibits apoptosis of cortical neurons following brain ischemic reperfusion injury in a transient model of focal cerebral ischemia. Int J Pept Res Ther 20:127–132CrossRefGoogle Scholar
  27. 27.
    Gheibi S, Aboutaleb N, Khaksari M, Kalalian-Moghaddam H, Vakili A, Asadi Y et al (2014) Hydrogen sulfide protects the brain against ischemic reperfusion injury in a transient model of focal cerebral ischemia. J Mol Neurosci 54:264–270CrossRefPubMedGoogle Scholar
  28. 28.
    Erfani S, Khaksari M, Oryan S, Shamsaei N, Aboutaleb N, Nikbakht F (2015) Nampt/PBEF/visfatin exerts neuroprotective effects against ischemia/reperfusion injury via modulation of Bax/Bcl-2 ratio and prevention of caspase-3 activation. J Mol Neurosci 56(1):237–243CrossRefPubMedGoogle Scholar
  29. 29.
    Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Khaksari M, Aboutaleb N, Nasirinezhad F, Vakili A, Madjd Z (2012) Apelin-13 protects the brain against ischemic reperfusion injury and cerebral edema in a transient model of focal cerebral ischemia. J Mol Neurosci 48:201–208CrossRefPubMedGoogle Scholar
  31. 31.
    Jia J, Hu Y-S, Wu Y, Yu H-X, Liu G, Zhu D-N et al (2010) Treadmill pre-training suppresses the release of glutamate resulting from cerebral ischemia in rats. Exp Brain Res 204:173–179CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang F, Wu Y, Jia J (2011) Exercise preconditioning and brain ischemic tolerance. Neuroscience 177:170–176CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang F, Wu Y, Jia J, Hu Y-S (2010) Pre-ischemic treadmill training induces tolerance to brain ischemia: involvement of glutamate and ERK1/2. Molecules 15:5246–5257CrossRefPubMedGoogle Scholar
  34. 34.
    White BC, Sullivan JM, DeGracia DJ, O’Neil BJ, Neumar RW, Grossman LI et al (2000) Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 179:1–33CrossRefPubMedGoogle Scholar
  35. 35.
    Chen J, Jin K, Chen M, Pei W, Kawaguchi K, Greenberg DA et al (1997) Early detection of DNA strand breaks in the brain after transient focal ischemia: implications for the role of DNA damage in apoptosis and neuronal cell death. J Neurochem 69:232–245CrossRefPubMedGoogle Scholar
  36. 36.
    Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14CrossRefPubMedGoogle Scholar
  37. 37.
    Ohtsuka K, Suzuki T (2000) Roles of molecular chaperones in the nervous system. Brain Res Bull 53:141–146CrossRefPubMedGoogle Scholar
  38. 38.
    Lee M, Hyun D-H, Marshall K-A, Ellerby LM, Bredesen DE, Jenner P et al (2001) Effect of overexpression of BCL-2 on cellular oxidative damage, nitric oxide production, antioxidant defenses, and the proteasome. Free Radic Biol Med 31:1550–1559CrossRefPubMedGoogle Scholar
  39. 39.
    Sharony R, Pintucci G, Saunders PC, Grossi EA, Baumann FG, Galloway AC et al (2006) Matrix metalloproteinase expression in vein grafts: role of inflammatory mediators and extracellular signal-regulated kinases-1 and-2. Am J Physiol Heart Circ Physiol 290:H1651–H1659CrossRefPubMedGoogle Scholar
  40. 40.
    Cavanaugh JE (2004) Role of extracellular signal regulated kinase 5 in neuronal survival. Eur J Biochem 271:2056–2059CrossRefPubMedGoogle Scholar
  41. 41.
    Jones NM, Bergeron M (2004) Hypoxia-induced ischemic tolerance in neonatal rat brain involves enhanced ERK1/2 signaling. J Neurochem 89:157–167CrossRefPubMedGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Nahid Aboutaleb
    • 1
  • Nabi Shamsaei
    • 2
    Email author
  • Mehdi Khaksari
    • 3
  • Sohaila Erfani
    • 4
  • Hamid Rajabi
    • 5
  • Farnaz Nikbakht
    • 1
  1. 1.Physiology Research Center and Department of Physiology, Faculty of MedicineIran University of Medical SciencesTehranIran
  2. 2.Department of Physical Education and Sports Science, Faculty of Literature and HumanitiesIlam UniversityIlamIran
  3. 3.School of MedicineShahroud University of Medical SciencesShahroudIran
  4. 4.Department of Animal Physiology, Faculty of BiologyKharazmi UniversityTehranIran
  5. 5.Faculty of Physical Education and Sports ScienceKharazmi UniversityTehranIran

Personalised recommendations