Advertisement

The Journal of Physiological Sciences

, Volume 65, Issue 3, pp 201–215 | Cite as

Contribution of apoptosis in myocardial reperfusion injury and loss of cardioprotection in diabetes mellitus

  • Reza BadalzadehEmail author
  • Behnaz MokhtariEmail author
  • Raana Yavari
Review

Abstract

Ischemic heart disease is one of the major causes of death worldwide. Ischemia is a condition in which blood flow of the myocardium declines, leading to cardiomyocyte death. However, reperfusion of ischemic regions decreases the rate of mortality, but it can also cause later complications. In a clinical setting, ischemic heart disease is always coincident with other co-morbidities such as diabetes. The risk of heart disease increases 2–3 times in diabetic patients. Apoptosis is considered to be one of the main pathophysiological mechanisms of myocardial ischemia–reperfusion injury. Diabetes can disrupt the anti-apoptotic intracellular signaling cascades involved in myocardial protection. Therefore, targeting these changes may be an effective cardioprotective approach in the diabetic myocardium against ischemia–reperfusion injury. In this article, we review the interaction of diabetes with the pathophysiology of myocardial ischemia–reperfusion injury, focusing on the contribution of apoptosis in this context, and then discuss the alterations of pro-apoptotic or anti-apoptotic pathways probably responsible for the loss of cardioprotection in diabetes.

Keywords

Myocardial reperfusion injury Apoptosis Diabetes Preconditioning Postconditioning 

Notes

Conflict of interest

None.

References

  1. 1.
    Donahoe SM, Stewart GC, McCabe CH, Mohanavelu S, Murphy SA, Cannon CP et al (2007) Diabetes and mortality following acute coronary syndromes. JAMA 298(7):765–775PubMedGoogle Scholar
  2. 2.
    Gu W, Pagel PS, Warltier DC, Kersten JR (2003) Modifying cardiovascular risk in diabetes mellitus. Anesthesiology 98:774–779PubMedGoogle Scholar
  3. 3.
    Ferdinandy P, Schulz R, Baxter GF (2007) Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 59:418–458PubMedGoogle Scholar
  4. 4.
    Hayat SA, Patel B, Khattar RS, Malik RA (2004) Diabetic cardiomyopathy: mechanisms, diagnosis and treatment. Clin Sci 107:539–557PubMedGoogle Scholar
  5. 5.
    Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM (2005) Preconditioning the diabetic heart: the importance of Akt phosphorylation. Diabetes 54:2360–2364PubMedGoogle Scholar
  6. 6.
    Kersten JR, Toller WG, Gross ER, Pagel PS, Warltier DC (2000) Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. Am J Physiol Heart Circ Physiol 278:1218–1224Google Scholar
  7. 7.
    Nieszner E, Posa I, Kocsis E, Pogatsa G, Preda I, Koltai MZ (2002) Influence of diabetic state and that of different sulfonylureas on the size of myocardial infarction with and without ischemic preconditioning in rabbits. Exp Clin Endocrinol Diabetes 110:212–218PubMedGoogle Scholar
  8. 8.
    Kristiansen SB, Lofgren B, Stottrup NB, Khatir D, Nielsen-Kudsk JE, Nielsen TT et al (2004) Ischaemic preconditioning does not protect the heart in obese and lean animal models of Type 2 diabetes. Diabetol 47:1716–1721Google Scholar
  9. 9.
    Huhn R, Heinen A, Weber NC, Hollmann MW, Schlack W, Preckel B (2008) Hyperglycaemia blocks sevoflurane-induced postconditioning in the rat heart in vivo: cardioprotection can be restored by blocking the mitochondrial permeability transition pore. Br J Anaesth 100(4):465–471PubMedGoogle Scholar
  10. 10.
    Wagner C, Kloeting I, Strasser RH, Weinbrenner C (2008) Cardioprotection by postconditioning is lost in WOKW rats with metabolic syndrome: role of glycogen synthase kinase-3β. J Cardiovasc Pharmacol 52:430–437PubMedGoogle Scholar
  11. 11.
    Hassouna A, Loubani M, Matata BM, Fowler A, Standen NB, Galinanes M (2006) Mitochondrial dysfunction as the cause of the failure to precondition the diabetic human myocardium. Cardiovasc Res 69:450–458PubMedGoogle Scholar
  12. 12.
    Ebel D, Mullenheim J, Frassdorf J (2003) Effect of acute hyperglycaemia and diabetes mellitus with and without short-term insulin treatment on myocardial ischaemic late preconditioning in the rabbit heart in vivo. Pflugers Arch 446:175–182PubMedGoogle Scholar
  13. 13.
    Walters AM, Porter GA, Brookes PS Jr (2012) Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ Res 111:1222–1236PubMedCentralPubMedGoogle Scholar
  14. 14.
    Ankur R, Neha K, Ashok K (2012) Myocardial ischemia reperfusion injury-pathogenesis and prevention. Int J Res Pharm Biomed Sci 3(2):929–934Google Scholar
  15. 15.
    Ferdinandy P, Schulz R (2003) Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol 138:532–543PubMedCentralPubMedGoogle Scholar
  16. 16.
    Moensa AL, Claeysa MJ, Timmermansb JP, Vrints CJ (2005) Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. Int J Cardiol 100:179–190Google Scholar
  17. 17.
    Tsang A, Hausenloy DJ, Yellon DM (2005) Myocardial postconditioning: reperfusion injury revisited. Am J Physiol Heart Circ Physiol 289(1):H2–H7PubMedGoogle Scholar
  18. 18.
    Badalzadeh R, Mohammadi M, Yousefi B (2014) Diosgenin attenuates inflammatory response induced by myocardial reperfusion injury: role of mitochondrial ATP-sensitive potassium channels. J Physiol Biochem 70:425–432PubMedGoogle Scholar
  19. 19.
    Ghyasi R, Mohammadi M, Badalzadeh R, Ghyasi A (2013) Effect of mebudipine on oxidative stress and lipid peroxidation in myocardial ischemic reperfusion injury in male rat. J Res Med Sci 11:1150–1155Google Scholar
  20. 20.
    Nakamura T, Mizuno S, Matsumoto K, Sawa Y, Matsuda H, Nakamura T (2000) Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest 106:1511–1519PubMedCentralPubMedGoogle Scholar
  21. 21.
    JafariAnarkooli I, Sankian M, Ahmadpour S, Varasteh AR, Haghir H (2008) Evaluation of Bcl-2 family gene expression and caspase-3 activity in hippocampus of STZ-induced diabetic rats. Exp Diabetes Res. doi: 10.1155/2008/638467 Google Scholar
  22. 22.
    Jovanovic S, Jovanovic A (2005) High glucose regulates the activity of cardiac sarcolemmal ATP sensitive k+ channels via 1,3-bisphosphoglycerate: a novel link between cardiac membrane excitability and glucose metabolism. Diabetes 54(2):383–393PubMedCentralPubMedGoogle Scholar
  23. 23.
    Miki T, Yuda S, Kouzu H, Miura T (2013) Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev 18:149–166PubMedCentralPubMedGoogle Scholar
  24. 24.
    Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia–reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res 61:448–460PubMedGoogle Scholar
  25. 25.
    Brady NR, Hamacher-Brady A, Gottlieb RA (2006) Proapoptotic BCL-2 family members and mitochondrial dysfunction during ischemia/reperfusion injury, a study employing cardiac HL-1 cells and GFP biosensors. Biochim Biophys Acta 1757(5–6):667–678PubMedGoogle Scholar
  26. 26.
    Maulik N, Goswami S, Galang N, Das DK (1999) Differential regulation of Bcl-2, AP-1 and NF-kB on cardiomyocyte apoptosis during myocardial ischemic stress adaptation. FEBS Lett 443:331–336PubMedGoogle Scholar
  27. 27.
    Eefting F, Rensing B, Wigman J, Pannekoek WJ, Liu WM, Lips DJ, Doevendans PA (2004) Role of apoptosis in reperfusion injury. Cardiovasc Res 61:414–426PubMedGoogle Scholar
  28. 28.
    Krijnen PJ, Nijmeijer R, Meijer CJLM, Visser A, Hack CE, Niessen HWM (2002) Apoptosis in myocardial ischaemia and infarction. J Clin Pathol 55:801–811PubMedCentralPubMedGoogle Scholar
  29. 29.
    Krijnen PAJ, Simsek S, Niessen HWM (2009) Apoptosis in diabetes. Apoptosis 14:1387–1388PubMedCentralPubMedGoogle Scholar
  30. 30.
    Watanabe K, Thandavarayan RA, Harima M, Sari FR, Gurusamy N, Veeraveedu PT, Mito S, Arozal W, Sukumaran V, Laksmanan AP, Soetikno V, Kodama M, Aizawa Y (2010) Role of differential signaling pathways and oxidative stress in diabetic cardiomyopathy. Curr Cardiol Rev 6(4):280–290PubMedCentralPubMedGoogle Scholar
  31. 31.
    Lasker SP, McLachlan C, Wang L, Ali SMK, Jelinek HF (2011) Oxidative stress causes cardiomyocyte apoptosis: may be the determinant of development of myocardial disarray in diabetes. J Diabetol 3:2Google Scholar
  32. 32.
    Badalzadeh R, Mohammadi M, Najafi M, Ahmadiasl N, Farajnia S, Ebrahimi H (2012) The additive effects of ischemic postconditioning and cyclosporine-a on nitric oxide activity and functions of diabetic myocardium injured by ischemia/reperfusion. J Cardiovasc Pharmacol Ther 17(2):181–189PubMedGoogle Scholar
  33. 33.
    Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ (2002) Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 51(6):1938–1948PubMedGoogle Scholar
  34. 34.
    Hoffman JW, Gilbert TB, Poston RS, Silldorff EP (2004) Myocardial reperfusion injury: etiology, mechanisms, and therapies. JECT 36:391–411Google Scholar
  35. 35.
    Suen D-F, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22:1577–1590PubMedCentralPubMedGoogle Scholar
  36. 36.
    Favaloro B, Allocati N, Graziano V, Di Ilio C, De Laurenzi V (2012) Role of apoptosis in disease. Aging 4(5):330–349PubMedCentralPubMedGoogle Scholar
  37. 37.
    McCully JD, Wakiyama H, Hsieh Y-J, Jones M, Levitsky S (2004) Differential contribution of necrosis and apoptosis in myocardial ischemia–reperfusion injury. Am J Physiol Heart Circ Physiol 286:1923–1935Google Scholar
  38. 38.
    Gao J, Sana R, Calder V, Calonge M, Lee W, Wheeler LA, Stern ME (2013) Mitochondrial permeability transition pore in inflammatory apoptosis of human conjunctival epithelial cells and T cells: effect of cyclosporin A. IOVS 54:4717–4733Google Scholar
  39. 39.
    Javadov S, Karmazyn M, Escobales N (2009) Mitochondrial permeability transition pore opening as a promising therapeutic target in cardiac diseases. JPET 330:670–678Google Scholar
  40. 40.
    Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RAJ, Murphy MP, Sammut IA (2005) Targeting an antioxidant to mitochondria decreases cardiac ischemia–reperfusion injury. FASEB J 19:1088–1095PubMedGoogle Scholar
  41. 41.
    Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc Res 61:372–385PubMedGoogle Scholar
  42. 42.
    Najafi M, Farajnia S, Mohammadi M, Badalzadeh R, Ahmadi Asl N, Baradaran B, Amani M (2014) Inhibition of mitochondrial permeability transition pore restores the cardioprotection by postconditioning in diabetic hearts. J Diabetes Metab Disord 13(1):106PubMedCentralPubMedGoogle Scholar
  43. 43.
    Ardehali H, Rourke B (2005) Mitochondrial KATP channels in cell survival and death. J Mol Cell Cardiol 39(1):7–16PubMedCentralPubMedGoogle Scholar
  44. 44.
    Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia–reperfusion injury. Physiol Rev 88(2):581–609PubMedCentralPubMedGoogle Scholar
  45. 45.
    Ma H, Huang X, Li Q, Guan Y, Yuan F, Zhang Y (2011) ATP-dependent potassium channels and mitochondrial permeability transition pores play roles in the cardioprotection of theaflavin in young rat. J Physiol Sci 61(4):337–342PubMedGoogle Scholar
  46. 46.
    Badalzadeh R, Yousefi B, Majidinia M, Ebrahimi H (2014) Anti-arrhythmic effect of diosgenin in reperfusion-induced myocardial injury in rat model: activation of nitric oxide system and mitochondrial KATP channel. J Physiol Sci 64:393–400PubMedGoogle Scholar
  47. 47.
    Chen Z, Chua CC, Ho YS, Hamdy RC, Chua BH (2001) Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol Heart Circ Physiol 280:H2313–H2320PubMedGoogle Scholar
  48. 48.
    Baines CP (2009) The mitochondrial permeability transition pore and ischemia reperfusion injury. Basic Res Cardiol 104(2):181–188PubMedCentralPubMedGoogle Scholar
  49. 49.
    Imahashi K, Schneider MD, Steenbergen C, Murphy E (2004) Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury. Circ Res 95:734–741PubMedGoogle Scholar
  50. 50.
    Wen Dong J, Feng Zhu H, Zhong Zhu W, Lei Ding H, Min Ma T, Nian Zhou Z (2003) Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression. Cell Res 13(5):385–391Google Scholar
  51. 51.
    Hu Z-Y, Abbott GW, Fang Y-D, Huang Y-S, Liu J (2013) Emulsified isoflurane postconditioning produces cardioprotection against myocardial ischemia–reperfusion injury in rats. J Physiol Sci 63:251–261PubMedGoogle Scholar
  52. 52.
    Hochhauser E, Kivity S, Offen D, Maulik N, Otani H, Barhum Y, Pannet H, Shneyvays V, Shainberg A, Goldshtaub V, Tobar A, Vidne BA (2003) Bax ablation protects against myocardial ischemia reperfusion injury in transgenic mice. Am J Physiol Heart Circ Physiol 284:H2351–H2359PubMedGoogle Scholar
  53. 53.
    Kinnally KW, Peixoto PM, Ryu S-Y (1813) Dejean LM (2011) Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim Biophys Acta 4:616–622Google Scholar
  54. 54.
    Scarabelli T, Stephanou A, Rayment N, Pasini E, Comini L, Curello S, Ferrari R, Knight R, Latchman D (2001) Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation 104:253–256PubMedGoogle Scholar
  55. 55.
    Al-Mashat HA, Kandru S, Liu R, Behl Y, Desta T, Graves DT (2006) Diabetes enhances mRNA levels of proapoptotic genes and caspase activity, which contribute to impaired healing. Diabetes 55:487–495PubMedGoogle Scholar
  56. 56.
    Wali JA, Masters SL, Thomas HE (2013) Linking metabolic abnormalities to apoptotic pathways in beta cells in type 2 diabetes. Cells 2:266–283PubMedCentralPubMedGoogle Scholar
  57. 57.
    Lee SC, Pervaiz S (2007) Apoptosis in the pathophysiology of diabetes mellitus. Int J Biochem Cell B 39:497–504Google Scholar
  58. 58.
    Gomez L, Paillard M, Thibault H, Derumeaux G, Ovize M (2008) Inhibition of GSK3b by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circ 117:2761–2768Google Scholar
  59. 59.
    Badalzadeh R, Mohammadi M, Faranjia S, Najafi M (2015) The role of glycogen synthase kinase-3β and oxidation status in chronic diabetes-induced loss of cardioprotection by ischemic postconditioning. APB (article in press)Google Scholar
  60. 60.
    Peart JN, Headrick JP (2009) Clinical cardioprotection and the value of conditioning responses. Am J Physiol Heart Circ Physiol 296:1705–1720Google Scholar
  61. 61.
    Tomida T (2015) Visualization of the spatial and temporal dynamics of MAPK signaling using fluorescence imaging techniques. J Physiol Sci 65(1):37–49PubMedGoogle Scholar
  62. 62.
    J-i Abe, Baines CP, Berk BC (2000) Role of mitogen-activated protein kinases in ischemia and reperfusion injury: the good and the bad. Circ Res 86:607–609Google Scholar
  63. 63.
    Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79(1):143–180PubMedGoogle Scholar
  64. 64.
    Ha T, Hua F, Liu X, Ma J, McMullen JR, Shioi T, Izumo S, Kelley J, Gao X, Browder W, Williams DL, Kao RL, Li C (2008) Lipopolysaccharide-induced myocardial protection against ischaemia/reperfusion injury is mediated through a PI3K/Akt-dependent mechanism. Cardiovasc Res 78:546–553PubMedGoogle Scholar
  65. 65.
    Hua F, Ha T, Ma J, Li Y, Kelley J, Gao X, Browder IW, Kao RL, Williams DL, Li C (2007) Protection against myocardial ischemia/reperfusion injury in TLR4-deficient mice is mediated through a phosphoinositide 3-kinase-dependent mechanism. J Immunol 178:7317–7324PubMedGoogle Scholar
  66. 66.
    Ferreira FM, Seica R, Oliveira PJ, Coxito PM, Moreno AJ, Palmeira CM, Santos MS (2003) Diabetes induces metabolic adaptations in rat liver mitochondria: role of coenzyme Q and cardiolipin contents. Biochim Biophysica Acta 1639:113–120Google Scholar
  67. 67.
    Ganguly PK, Thliveris JA, Mehta A (1990) Evidence against the involvement of nonenzymatic glycosylation in diabetic cardiomyopathy. Metabo 39:769–773Google Scholar
  68. 68.
    Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM (2005) Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol 288:971–976Google Scholar
  69. 69.
    Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM (2004) Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3 kinase-akt pathway. Circ Res 95:230–232PubMedGoogle Scholar
  70. 70.
    Gross ER, Hsu AK, Gross GJ (2007) Diabetes abolishes morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3. Diabetes 56:127–136PubMedGoogle Scholar
  71. 71.
    Song D-K, Jang Y, Kim JH, Chun K-J, Lee D, Xu Z (2010) Polyphenol—epigallocatechin gallate during ischemia limits infarct size via mitochondrial KATP channel activation in isolated rat hearts. J Korean Med Sci 25:380–386PubMedCentralPubMedGoogle Scholar
  72. 72.
    Chen M, He H, Zhan S, Krajewski S, Reed JC, Gottlieb RA (2001) Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem 276:30724–30728PubMedGoogle Scholar
  73. 73.
    Communal C, Singh K, Sawyer DB, Colucci WS (1999) Opposing effects of β1 and β2 adrenergic receptors on cardiac myocyte apoptosis. Role of a pertussis toxin-sensitive G protein. Circ 100:2210–2212Google Scholar
  74. 74.
    Chesely A, Lundberg MS, Asai T, Xiao RP, Ohtani S, Lakatta EG, Crow MT (2000) The β2 adrenergic receptor delivers an anti-apoptotic signal to cardiac myocyte through Gi-dependent coupling to phosphatidylinositol-3-kinase. Circ Res 87:1172–1179Google Scholar
  75. 75.
    Communal C, Coluci WS (2005) The control of cardiomyocyte apoptosis via the beta-adrenergic signaling pathway. Europ Pubmed Central 98(3):236–241Google Scholar
  76. 76.
    Vadlamudi RV, Mc Neil JH (1984) Effect of experimental diabetes on isolated rat heart responsiveness to isoproterenole. Can J Physiol Pharmacol 62:124–131PubMedGoogle Scholar
  77. 77.
    Wichelhaus A, Russ M, Peterson S, Eckel J (1994) G-protein expression and adenylate cyclase regulation in ventricular cardiomyocyte from STZ diabetic rats. Am J Physiol 267:548–555Google Scholar
  78. 78.
    Hermann R, Marina Prendes MG, Torresin ME, Vélez D, Savino EA, Varela A (2012) Effects of the AMP-activated protein kinase inhibitor compound C on the postconditioned rat heart. J Physiol Sci 62(4):333–341PubMedGoogle Scholar
  79. 79.
    Paiva MA, Rutter-Locher Z, Goncalves LM, Providência LA, Davidson SM, Yellon DM, Mocanu MM (2011) Enhancing AMPK activation during ischemia protects the diabetic heart against reperfusion injury. Am J Physiol Heart Circ Physiol 300:2123–2134Google Scholar
  80. 80.
    Carley AN, Severson DL (2005) Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochem Biophysica Acta 1734:112–126Google Scholar
  81. 81.
    Cersosimo E, DeFronzo RA (2006) Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases. Diabetes Metab Res Rev 22:423–436PubMedGoogle Scholar
  82. 82.
    Elbassuoni EA (2014) Incretin attenuates diabetes-induced damage in rat cardiac tissue. J Physiol Sci 64:357–364Google Scholar
  83. 83.
    Galin M, Fowler AG (2004) Role of clinical pathologies in myocardial injury following ischaemia and reperfusion. Cardiovasc Res 61:512–521Google Scholar
  84. 84.
    Yang X-M, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV (2004) Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol 44(5):1103–1110PubMedGoogle Scholar
  85. 85.
    Sack MN, Yellon DM (2003) Insulin therapy as an adjunct to reperfusion after acute coronary ischemia. J Am Coll Cardiol 41(8):1404–1407PubMedGoogle Scholar
  86. 86.
    Prakash P, Khanna V, Singh V, Jyoti A, Jain M, Keshari RSh, Barthwal MK, Dikshit M (2011) Atorvastatin protects against ischemia–reperfusion injury in fructose-induced insulin resistant rats. Cardiovasc Drugs Ther 25:285–297PubMedGoogle Scholar
  87. 87.
    Braunersreuther V, Montecucco F, Ashri M, Pelli G, Galan K, Frias M, Burger F, Quindere ALG, Montessuit Ch, Krause K-H, Mach F, Jaquet V (2013) Role of NADPH oxidase isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion injury. J Mol Cell Cardiol 64:99–107PubMedGoogle Scholar
  88. 88.
    Yang X-Y, Zhao N, Liu Y-Y, Hu B-H, Sun K, Chang X, Wei X-H, Fan J-Y, Han J-Y (2013) Inhibition of NADPH oxidase mediates protective effect of cardiotonic pills against rat heart ischemia/reperfusion injury. Evid Based Complement Alternat Med. doi: 10.1155/2013/728020
  89. 89.
    Matsushima Sh, Kuroda J, Ago T, Zhai P, Ikeda Y, Oka Sh, Fong G-H, Tian R, Sadoshima J (2013) Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1α and upregulation of peroxisome proliferator–activated receptor-α. Circ Res 112:1135–1149PubMedGoogle Scholar
  90. 90.
    Li H, Liu Z, Wang J, Wong GT, Cheung Ch-W, Zhang L, Chen C, Xia Zh, Irwin MG (2013) Susceptibility to myocardial ischemia reperfusion injury at early stage of type 1 diabetes in rats. Cardiovasc Diabetol 12:133PubMedCentralPubMedGoogle Scholar
  91. 91.
    Gorin Y, Block K (2013) Nox as a target for diabetic complications. Clin Sci 125:361–382PubMedGoogle Scholar
  92. 92.
    Xu J, Zhou Q, Xu W, Cai L (2012) Endoplasmic reticulum stress and diabetic cardiomyopathy. Exp Diabetes Res. doi: 10.1155/2012/827971 Google Scholar
  93. 93.
    Lakshmanan AP, Harima M, Suzuki K, Soetikno V, Nagata M, Nakamura T, Takahashi T, Sone H, Kawachi H, Watanabe K (2013) The hyperglycemia stimulated myocardial endoplasmic reticulum (ER) stress contributes to diabetic cardiomyopathy in the transgenic non-obese type 2 diabetic rats: a differential role of unfolded protein response (UPR) signaling proteins. Int J Biochem Cell Biol 45:438–447PubMedGoogle Scholar
  94. 94.
    Podgorska M, Kocbuch K, Grden M, Szutowicz A, Pawelczyk T (2006) Reduced ability to release adenosine by diabetic rat cardiac fibroblasts due to altered expression of nucleoside transporters. J Physiol 576(1):179–189PubMedCentralPubMedGoogle Scholar
  95. 95.
    Vivar R, Humeres C, Varela M, Ayala P, Guzmán N, Olmedo I, Catalán M, Boza P, Muñoz C, Araya GD (2012) Cardiac fibroblast death by ischemia/reperfusion is partially inhibited by IGF-1 through both PI3K/Akt and MEK–ERK pathways. Exp Mol Pathol 93:1–7PubMedGoogle Scholar
  96. 96.
    Abrial M, Silva CCD, Pillot B, Augeul L, Ivanes F, Teixeira G, Cartier R, Angoulvant D, Ovize M, Ferrera R (2014) Cardiac fibroblasts protect cardiomyocytes against lethal ischemia–reperfusion injury. J Mol Cell Cardiol 68:56–65PubMedGoogle Scholar
  97. 97.
    Aneja A, Tang WHW, Bansilal S, Garcia MJ, Farkouh ME (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121:748–757PubMedGoogle Scholar
  98. 98.
    Miki T, Itoh T, Sunaga D, Miura T (2012) Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovasc Diabetol 11:67PubMedCentralPubMedGoogle Scholar
  99. 99.
    Yin X, Zheng Y, Zhai X, Zhao X, Lu C (2012) Diabetic inhibition of preconditioning- and postconditioning-mediated myocardial protection against ischemia/reperfusion injury. Exp Diabetes Res. doi: 10.1155/2012/198048 PubMedCentralPubMedGoogle Scholar
  100. 100.
    Hausenloy DJ, Yellon DM (2009) Preconditioning and postconditioning: underlying mechanisms and clinical application. Ather 204:334–341Google Scholar
  101. 101.
    Tosaki A, Engelman DT, Engelman RM, Das DK (1996) The evolution of diabetic response to ischemia/reperfusion and preconditioning in isolated working rat hearts. Cardiovasc Res 31(4):526–536PubMedGoogle Scholar
  102. 102.
    Miura T, Miki T (2009) GSK-3β, a therapeutic target for cardiomyocyte protection. Circ J 73(7):1184–1192PubMedGoogle Scholar
  103. 103.
    Yadav HN, Singh M, Sharma PL (2010) Involvement of GSK-3β in attenuation of the cardioprotective effect of ischemic preconditioning in diabetic rat heart. Mol Cell Biochem 343(1–2):75–81PubMedGoogle Scholar
  104. 104.
    Jin C, Wu J, Watanabe M, Okada T, Iesaki T (2012) Mitochondrial K+ channels are involved in ischemic postconditioning in rat hearts. J Physiol Sci 62(4):325–332PubMedGoogle Scholar
  105. 105.
    del Valle Hector F, Lascano EC, Negroni JA, Crottogini AJ (2003) Absence of ischemic preconditioning protection in diabetic sheep hearts: role of sarcolemmal KATP channel dysfunction. Mol Cell Biochem 249:21–30PubMedGoogle Scholar
  106. 106.
    Ghiasi R, Mohammadi M, Badalzadeh R, Rashidi B, Sepehri G (2011) The effect of mebudipine on cardiac functions and activity of myocardial nitric oxide system in ischemia–reperfusion injury in rat. Cardiovasc J Afr 22:319–323Google Scholar
  107. 107.
    Di Filippo C, Marfella R, Cuzzocrea S, Piegari E, Petronella P, Giugliano D, Rossi F, D’Amico M (2005) Hyperglycemia in streptozotocin-induced diabetic rat increases infarct size associated with low levels of myocardial HO-1 during ischemia/reperfusion. Diabetes 54:803–810PubMedGoogle Scholar
  108. 108.
    Ouyang Ch, You J, Xie Zh (2014) The interplay between autophagy and apoptosis in the diabetic heart. J Mol Cell Cardiol 71:71–80PubMedGoogle Scholar
  109. 109.
    Mellor KM, Bell JR, Ritchie RH, Delbridge LMD (2013) Myocardial insulin resistance, metabolic stress and autophagy in diabetes myocardial insulin resistance, metabolic stress and autophagy in diabetes. Clin Exp Pharmacol Physiol 40:56–61PubMedGoogle Scholar
  110. 110.
    Xie Zh, Lau K, Eby B, Lozano P, He Ch, Pennington B, Li H, Rathi Sh, Dong Y, Tian R, Kem D, Zou M-H (2011) Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60:1770–1778PubMedCentralPubMedGoogle Scholar
  111. 111.
    Quan W, Lim Y-M, Lee M-Sh (2012) Role of autophagy in diabetes and endoplasmic reticulum stress of pancreatic β-cells. Exp Mol Med 44(2):81–88PubMedCentralPubMedGoogle Scholar
  112. 112.
    Brady AH, Brady NR, Gottlieb RA (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 281(40):29776–29787PubMedGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2015

Authors and Affiliations

  1. 1.Cardiovascular Research CenterTabriz University of Medical SciencesTabrizIran
  2. 2.Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
  3. 3.Department of Physiology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran

Personalised recommendations