The Journal of Physiological Sciences

, Volume 64, Issue 6, pp 433–443 | Cite as

Insulin is involved in transcriptional regulation of NKCC and the CFTR Cl channel through PI3K activation and ERK inactivation in renal epithelial cells

Original Paper

Abstract

It is is well known that insulin stimulates glucose transport and epithelial Na+ channel (ENaC)-mediated Na+ reabsorption; however, the action of insulin on Cl secretion is not fully understood. In this study, we investigated the action of insulin on Na+–K+–2Cl cotransporter (NKCC)-mediated Cl secretion in epithelial A6 cells. Interestingly, insulin treatment remarkably enhanced the forskolin-stimulated Cl secretion associated with an increase in apical Cl conductance by upregulating mRNA expression of both CFTR and NKCC, although insulin treatment alone had no effect on the basal Cl secretion or apical Cl conductance without forskolin application. We next elucidated a role of phosphoinositide 3-kinase (PI3K) in the insulin-induced enhancement of the Cl secretion, since insulin actually activated PI3K, resulting in activation of Akt, a downstream molecule of PI3K. LY294002 (a PI3K inhibitor) reduced the Cl secretion by suppressing mRNA expression of NKCC, whereas insulin still had a stimulatory action on mRNA expression of CFTR even in the presence of LY294002. On the other hand, we found that a MEK inhibitor (PD98059) further enhanced the insulin-stimulated CFTR mRNA expression and the Cl secretion in forskolin-stimulated A6 cells and that insulin induced slight, transient activation of ERK followed by significant inactivation of ERK. These observations suggest that: (1) insulin respectively upregulates mRNA expression of NKCC and CFTR through activation of PI3K and inactivation of ERK; (2) insulin signals on mRNA expression of NKCC and CFTR are not enough to stimulate transepithelial Cl secretion, but enhance the stimulatory action of cAMP on transepithelial Cl secretion.

Keywords

Insulin NKCC CFTR Cl secretion 

Notes

Acknowledgments

This work was supported by Grants-in-Aid from the Japan Society of the Promotion of Science (24590283 to NN, 25670111 to YM), Salt Science (1235 to YM and NN) and Cell Research Conference to YM.

References

  1. 1.
    Bachmann O, Juric M, Seidler U, Manns MP, Yu H (2011) Basolateral ion transporters involved in colonic epithelial electrolyte absorption, anion secretion and cellular homeostasis. Acta Physiol (Oxf) 201:33–46CrossRefGoogle Scholar
  2. 2.
    Hong JH, Park S, Shcheynikov N, Muallem S (2014) Mechanism and synergism in epithelial fluid and electrolyte secretion. Pflugers Arch 466:1487–1499PubMedCrossRefGoogle Scholar
  3. 3.
    Marunaka Y (2014) Importance of expression and function of angiotensin II receptor type 1 in pulmonary epithelial cells. Respir Physiol Neurobiol 196:39–42PubMedCrossRefGoogle Scholar
  4. 4.
    Marunaka Y (2014) Characteristics and pharmacological regulation of epithelial Na+ channel (ENaC) and epithelial Na+ transport. J Pharmacol Sci. (in press).Google Scholar
  5. 5.
    Ikehara O, Hayashi H, Waguri T, Kaji I, Karaki S, Kuwahara A, Suzuki Y (2012) Subepithelial trypsin induces enteric nerve-mediated anion secretion by activating proteinase-activated receptor 1 in the mouse cecum. J Physiol Sci 62:211–219PubMedCrossRefGoogle Scholar
  6. 6.
    Ikehara O, Hayashi H, Waguri T, Kaji I, Karaki S, Kuwahara A, Suzuki Y (2014) Luminal trypsin induces enteric nerve-mediated anion secretion in the mouse cecum. J Physiol Sci 64:119–128PubMedCrossRefGoogle Scholar
  7. 7.
    Mizuno H, Suzuki Y, Watanabe M, Sokabe T, Yamamoto T, Hattori R, Gotoh M, Tominaga M (2014) Potential role of transient receptor potential (TRP) channels in bladder cancer cells. J Physiol Sci 64:305–314PubMedCrossRefGoogle Scholar
  8. 8.
    Fujii T, Minagawa T, Shimizu T, Takeguchi N, Sakai H (2012) Inhibition of ecto-ATPase activity by curcumin in hepatocellular carcinoma HepG2 cells. J Physiol Sci 62:53–58PubMedCrossRefGoogle Scholar
  9. 9.
    Fujii T, Awaka SY, Takahashi Y, Fujita K, Tsuji H, Shimizu T, Gomi T, Tsukada K, Sakai H (2013) Modulation of H+, K+ -ATPase activity by the molecular chaperone ERp57 highly expressed in gastric parietal cells. FEBS Lett 587:3898–3905Google Scholar
  10. 10.
    Takahashi Y, Fujii T, Fujita K, Shimizu T, Higuchi T, Tabuchi Y, Sakamoto H, Naito I, Manabe K, Uchida S, Sasaki S, Ikari A, Tsukada K, Sakai H (2014) Functional coupling of chloride-proton exchanger ClC-5 to gastric H+, K+ -ATPase. Biol Open 3:12–21PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Sun H, Niisato N, Nishio K, Hamilton KL, Marunaka Y (2014) Distinct action of flavonoids, myricetin and quercetin, on epithelial Cl secretion: useful tools as regulators of Cl secretion. Biomed Res Int 2014:902735PubMedPubMedCentralGoogle Scholar
  12. 12.
    Sasamoto K, Niisato N, Marunaka Y (2012) Analysis of epithelial ion transport by mathematical model. J Physiol Sci 62:S136Google Scholar
  13. 13.
    Banga A, Flaig S, Lewis S, Winfree S, Blazer-Yost BL (2014) Epinephrine stimulation of anion secretion in the Calu-3 serous cell model. Am J Physiol Lung Cell Mol Physiol 306:L937–L946PubMedCrossRefGoogle Scholar
  14. 14.
    Kim D, Kim J, Burghardt B, Best L, Steward MC (2014) Role of anion exchangers in Cl and HCO3 secretion by the human airway epithelial cell line Calu-3. Am J Physiol Cell Physiol 307:C208–C219PubMedCrossRefGoogle Scholar
  15. 15.
    Lee RJ, Foskett JK (2014) Ca2+ signaling and fluid secretion by secretory cells of the airway epithelium. Cell Calcium 55:325–336PubMedCrossRefGoogle Scholar
  16. 16.
    Ponce-Coria J, Markadieu N, Austin TM, Flammang L, Rios K, Welling PA, Delpire E (2014) A Novel Ste20-related proline/alanine-rich kinase (spak)-independent pathway involving calcium-binding protein 39 (Cab39) and serine threonine kinase with No lysine member 4 (WNK4) in the activation of Na-K-Cl cotransporters. J Biol Chem 289:17680–17688PubMedCrossRefGoogle Scholar
  17. 17.
    Asano J, Niisato N, Nakajima K, Miyazaki H, Yasuda M, Iwasaki Y, Hama T, Dejima K, Hisa Y, Marunaka Y (2009) Quercetin stimulates Na+/K+/2Cl cotransport via PTK-dependent mechanisms in human airway epithelium. Am J Respir Cell Mol Biol 41:688–695PubMedCrossRefGoogle Scholar
  18. 18.
    Nakajima K, Miyazaki H, Niisato N, Marunaka Y (2007) Essential role of NKCC1 in NGF-induced neurite outgrowth. Biochem Biophys Res Commun 359:604–610PubMedCrossRefGoogle Scholar
  19. 19.
    Nakajima K, Niisato N, Marunaka Y (2011) Quercetin stimulates NGF-induced neurite outgrowth in PC12 cells via activation of Na+/K+/2Cl cotransporter. Cell Physiol Biochem 28:147–156PubMedCrossRefGoogle Scholar
  20. 20.
    Okada S, Li Q, Whitin JC, Clayberger C, Krensky AM (2003) Intracellular mediators of granulysin-induced cell death. J Immunol 171:2556–2562PubMedCrossRefGoogle Scholar
  21. 21.
    Okada Y, Sato K, Numata T (2009) Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel. J Physiol 587:2141–2149PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Shiozaki A, Miyazaki H, Niisato N, Nakahari T, Iwasaki Y, Itoi H, Ueda Y, Yamagishi H, Marunaka Y (2006) Furosemide, a blocker of Na+/K+/2Cl cotransporter, diminishes proliferation of poorly differentiated human gastric cancer cells by affecting G0/G1 state. J Physiol Sci 56:401–406PubMedCrossRefGoogle Scholar
  23. 23.
    Miyazaki H, Shiozaki A, Niisato N, Ohsawa R, Itoi H, Ueda Y, Otsuji E, Yamagishi H, Iwasaki Y, Nakano T, Nakahari T, Marunaka Y (2008) Chloride ions control the G1/S cell-cycle checkpoint by regulating the expression of p21 through a p53-independent pathway in human gastric cancer cells. Biochem Biophys Res Commun 366:506–512PubMedCrossRefGoogle Scholar
  24. 24.
    Hiraoka K, Miyazaki H, Niisato N, Iwasaki Y, Kawauchi A, Miki T, Marunaka Y (2010) Chloride ion modulates cell proliferation of human androgen-independent prostatic cancer cell. Cell Physiol Biochem 25:379–388PubMedCrossRefGoogle Scholar
  25. 25.
    Ohsawa R, Miyazaki H, Niisato N, Shiozaki A, Iwasaki Y, Otsuji E, Marunaka Y (2010) Intracellular chloride regulates cell proliferation through the activation of stress-activated protein kinases in MKN28 human gastric cancer cells. J Cell Physiol 223:764–770PubMedGoogle Scholar
  26. 26.
    Kitagawa M, Niisato N, Shiozaki A, Ohta-Fujimoto M, Hosogi S, Miyazaki H, Ichikawa D, Otsuji E, Marunaka Y (2013) A regulatory role of K-Cl cotransporter in the cell cycle progression of breast cancer MDA-MB-231 cells. Arch Biochem Biophys 539:92–98PubMedCrossRefGoogle Scholar
  27. 27.
    Akita T, Okada Y (2014) Characteristics and roles of the volume-sensitive outwardly rectifying (VSOR) anion channel in the central nervous system. Neuroscience 275c:211–231CrossRefGoogle Scholar
  28. 28.
    Simon Bulley SB, Jaggar JH (2014) Cl channels in smooth muscle cells. Pflugers Arch 466:861–872PubMedCrossRefGoogle Scholar
  29. 29.
    de Los Heros P, Alessi DR, Gourlay R, Campbell DG, Deak M, Macartney TJ, Kahle KT, Zhang J (2014) The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+–Cl co-transporters. Biochem J 458:559–573CrossRefGoogle Scholar
  30. 30.
    Niisato N, Eaton DC, Marunaka Y (2004) Involvement of cytosolic Cl in osmoregulation of alpha-ENaC gene expression. Am J Physiol Renal Physiol 287:F932–F939PubMedCrossRefGoogle Scholar
  31. 31.
    Schobel N, Radtke D, Lubbert M, Gisselmann G, Lehmann R, Cichy A, Schreiner BS, Altmuller J, Spector AC, Spehr J, Hatt H, Wetzel CH (2012) Trigeminal ganglion neurons of mice show intracellular chloride accumulation and chloride-dependent amplification of capsaicin-induced responses. PLoS One 7:e48005PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Mohebbi N, Perna A, van der Wijst J, Becker HM, Capasso G, Wagner CA (2013) Regulation of two renal chloride transporters, AE1 and pendrin, by electrolytes and aldosterone. PLoS One 8:e55286PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Nakajima K, Niisato N, Marunaka Y (2012) Enhancement of tubulin polymerization by Cl-induced blockade of intrinsic GTPase. Biochem Biophys Res Commun 425:225–229PubMedCrossRefGoogle Scholar
  34. 34.
    Hayata H, Miyazaki H, Niisato N, Yokoyama N, Marunaka Y (2014) Lowered extracellular pH is involved in the pathogenesis of skeletal muscle insulin resistance. Biochem Biophys Res Commun 445:170–174PubMedCrossRefGoogle Scholar
  35. 35.
    Guo S (2014) Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol 220:T1–T23PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Blazer-Yost BL, Cox M (1988) Insulin-like growth factor 1 stimulates renal epithelial Na+ transport. Am J Physiol 255:C413–C417PubMedGoogle Scholar
  37. 37.
    Blazer-Yost BL, Cox M, Furlanetto R (1989) Insulin and IGF I receptor-mediated Na+ transport in toad urinary bladders. Am J Physiol 257:C612–C620PubMedGoogle Scholar
  38. 38.
    Marunaka Y, Eaton DC (1990) Effects of insulin and phosphatase on a Ca2+-dependent Cl channel in a distal nephron cell line (A6). J Gen Physiol 95:773–789PubMedCrossRefGoogle Scholar
  39. 39.
    Marunaka Y, Hagiwara N, Tohda H (1992) Insulin activates single amiloride-blockable Na channels in a distal nephron cell line (A6). Am J Physiol Renal Physiol 263:F392–F400Google Scholar
  40. 40.
    Blazer-Yost BL, Shah N, Jarett L, Cox M, Smith RM (1992) Insulin and IGF1 receptors in a model renal epithelium: receptor localization and characterization. Biochem Int 28:143–153PubMedGoogle Scholar
  41. 41.
    Marunaka Y, Niisato N, Shintani Y (1998) Protein phosphatase 2B-dependent pathway of insulin action on single Cl channel conductance in renal epithelium. J Membr Biol 161:235–245PubMedCrossRefGoogle Scholar
  42. 42.
    Marunaka Y, Niisato N, O’Brodovich H, Post M, Tanswell AK (1999) Roles of Ca2+ and protein tyrosine kinase in insulin action on cell volume via Na+ and K+ channels and Na+/K+/2Cl cotransporter in fetal rat alveolar type II pneumocyte. J Membr Biol 168:91–101PubMedCrossRefGoogle Scholar
  43. 43.
    Butterworth MB, Edinger RS, Frizzell RA, Johnson JP (2009) Regulation of the epithelial sodium channel by membrane trafficking. Am J Physiol Renal Physiol 296:F10–F24PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Marunaka Y, Niisato N, Taruno A, Ohta M, Miyazaki H, Hosogi S, Nakajima K, Kusuzaki K, Ashihara E, Nishio K, Iwasaki Y, Nakahari T (2011) Kubota T (2011) Regulation of epithelial sodium transport via epithelial Na+ channel. J Biomed Biotechnol 2011:978196PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Kamynina E, Staub O (2002) Concerted action of ENaC, Nedd4-2, and Sgk1 in transepithelial Na+ transport. Am J Physiol Renal Physiol 283:F377–F387PubMedGoogle Scholar
  46. 46.
    Diakov A, Nesterov V, Mokrushina M, Rauh R, Korbmacher C (2010) Protein kinase B alpha (PKBalpha) stimulates the epithelial sodium channel (ENaC) heterologously expressed in Xenopus laevis oocytes by two distinct mechanisms. Cell Physiol Biochem 26:913–924PubMedCrossRefGoogle Scholar
  47. 47.
    Aoi W, Hosogi S, Niisato N, Yokoyama N, Hayata H, Miyazaki H, Kusuzaki K, Fukuda T, Fukui M, Nakamura N, Marunaka Y (2013) Improvement of insulin resistance, blood pressure and interstitial pH in early developmental stage of insulin resistance in OLETF rats by intake of propolis extracts. Biochem Biophys Res Commun 432:650–653PubMedCrossRefGoogle Scholar
  48. 48.
    Perkins FM, Handler JS (1981) Transport properties of toad kidney epithelia in culture. Am J Physiol 241:C154–C159PubMedGoogle Scholar
  49. 49.
    Handler JS, Preston AS, Perkins FM, Matsumura M, Johnson JP, Watlington CO (1981) The effect of adrenal steroid hormones on epithelia formed in culture by A6 cells. Ann NY Acad Sci 372:442–454PubMedCrossRefGoogle Scholar
  50. 50.
    Handler JS, Perkins FM, Johnson JP (1981) Hormone effects on transport in cultured epithelia with high electrical resistance. Am J Physiol 240:C103–C105PubMedGoogle Scholar
  51. 51.
    Niisato N, Ohta M, Eaton DC, Marunaka Y (2012) Hypotonic stress upregulates beta- and gamma-ENaC expression through suppression of ERK by inducing MKP-1. Am J Physiol Renal Physiol 303:F240–F252PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Asano J, Niisato N, Nakajima K, Miyazaki H, Yasuda M, Iwasaki Y, Hama T, Dejima K, Hisa Y, Marunaka Y (2009) Quercetin stimulates Na+/K+/2Cl cotransport via PTK-dependent mechanisms in human airway epithelium. Am J Respir Cell Mol Biol 41:688–695PubMedCrossRefGoogle Scholar
  53. 53.
    Diener M, Scharrer E (1997) Effects of short-chain fatty acids on cell volume regulation and chloride transport in the rat distal colon. Comp Biochem Physiol A Physiol 118:375–379PubMedCrossRefGoogle Scholar
  54. 54.
    Chen B, Nicol G, Cho WK (2007) Role of calcium in volume-activated chloride currents in a mouse cholangiocyte cell line. J Membr Biol 215:1–13PubMedCrossRefGoogle Scholar
  55. 55.
    Niisato N, Marunaka Y (1999) Activation of the Na+-K+ pump by hyposmolality through tyrosine kinase-dependent Cl conductance in Xenopus renal epithelial A6 cells. J Physiol 518(Pt 2):417–432PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Niisato N, Ito Y, Marunaka Y (1999) Activation of Cl channel and Na+/K+/2Cl cotransporter in renal epithelial A6 cells by flavonoids: genistein, daidzein, and apigenin. Biochem Biophys Res Commun 254:368–371PubMedCrossRefGoogle Scholar
  57. 57.
    Sun H, Niisato N, Marunaka Y (2013) A role of PI3 kinase in insulin-induced enhancement of cAMP-stimulated Cl secretion in renal epithelia A6 cells. J Physiol Sci 63:S197Google Scholar
  58. 58.
    Niisato N, Driessche WV, Liu M, Marunaka Y (2000) Involvement of protein tyrosine kinase in osmoregulation of Na+ transport and membrane capacitance in renal A6 cells. J Membr Biol 175:63–77PubMedCrossRefGoogle Scholar
  59. 59.
    Ueda-Nishimura T, Niisato N, Miyazaki H, Naito Y, Yoshida N, Yoshikawa T, Nishino H, Marunaka Y (2005) Synergic action of insulin and genistein on Na+/K+/2Cl cotransporter in renal epithelium. Biochem Biophys Res Commun 332:1042–1052PubMedCrossRefGoogle Scholar
  60. 60.
    Markadieu N, Crutzen R, Blero D, Erneux C, Beauwens R (2005) Hydrogen peroxide and epidermal growth factor activate phosphatidylinositol 3-kinase and increase sodium transport in A6 cell monolayers. Am J Physiol 288:F1201–F1212Google Scholar
  61. 61.
    Longo N (1996) Insulin stimulates the Na+, K+ -ATPase and the Na+/K+/Cl cotransporter of human fibroblasts. Biochim Biophys Acta 1281:38–44Google Scholar
  62. 62.
    Sargeant RJ, Liu Z, Klip A (1995) Action of insulin on Na+-K+-ATPase and the Na+-K+-2Cl cotransporter in 3T3-L1 adipocytes. Am J Physiol 269:C217–C225PubMedGoogle Scholar
  63. 63.
    Zhao H, Hyde R, Hundal HS (2004) Signalling mechanisms underlying the rapid and additive stimulation of NKCC activity by insulin and hypertonicity in rat L6 skeletal muscle cells. J Physiol 560:123–136PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Tse WK, Au DW, Wong CK (2007) Effect of osmotic shrinkage and hormones on the expression of Na+/H+ exchanger-1, Na+/K+/2Cl cotransporter and Na+/K+-ATPase in gill pavement cells of freshwater adapted Japanese eel, Anguilla Japonica. J Exp Biol 210:2113–2120PubMedCrossRefGoogle Scholar
  65. 65.
    O’Mahony F, Toumi F, Mroz MS, Ferguson G, Keely SJ (2008) Induction of Na+/K+/2Cl cotransporter expression mediates chronic potentiation of intestinal epithelial Cl secretion by EGF. Am J Physiol Cell Physiol 294:C1362–C1370PubMedCrossRefGoogle Scholar
  66. 66.
    Panet R, Atlan H (1991) Stimulation of bumetanide-sensitive Na+/K+/Cl cotransport by different mitogens in synchronized human skin fibroblasts is essential for cell proliferation. J Cell Biol 114:337–342PubMedCrossRefGoogle Scholar
  67. 67.
    Maki M, Miyazaki H, Nakajima K, Yamane J, Niisato N, Morihara T, Kubo T, Marunaka Y (2007) Chloride-dependent acceleration of cell cycle via modulation of Rb and cdc2 in osteoblastic cells. Biochem Biophys Res Commun 361:1038–1043PubMedCrossRefGoogle Scholar
  68. 68.
    Silvis MR, Bertrand CA, Ameen N, Golin-Bisello F, Butterworth MB, Frizzell RA, Bradbury NA (2009) Rab11b regulates the apical recycling of the cystic fibrosis transmembrane conductance regulator in polarized intestinal epithelial cells. Mol Biol Cell 20:2337–2350PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Molecular Cell Physiology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
  2. 2.Department of Bio-Ionomics, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
  3. 3.Japan Institute for Food Education and HealthSt. Agnes’ UniversityKyotoJapan
  4. 4.Saisei Mirai ClinicsMoriguchiJapan

Personalised recommendations