Advertisement

The Journal of Physiological Sciences

, Volume 64, Issue 3, pp 161–169 | Cite as

Anxiolytic-like effects of mitragynine in the open-field and elevated plus-maze tests in rats

  • Ammar Imad Hazim
  • Surash Ramanathan
  • Suhanya Parthasarathy
  • Mustapha Muzaimi
  • Sharif Mahsufi Mansor
Original Paper

Abstract

The effects of mitragynine on anxiety-related behaviours in the open-field and elevated plus-maze tests were evaluated. Male Sprague–Dawley rats were orally treated with mitragynine (10, 20 and 40 mg/kg) or diazepam (10 mg/kg) 60 min before behavioural testing. Mitragynine doses used in this study were selected on the basis of approximately human equivalent doses with reference to our previous literature reports. Acute administration of mitragynine (10, 20 and 40 mg/kg) or diazepam (10 mg/kg) increased central zone and open arms exploration in the open-field and elevated plus-maze tests respectively. These anxiolytic-like effects of mitragynine were effectively antagonized by intraperitoneal administration of naloxone (2 mg/kg), flumazenil (10 mg/kg), sulpiride (0.5 mg/kg) or SCH 23390 (0.02 mg/kg) 15 min before mitragynine treatments. These findings reveal that the acute administration of mitragynine produces anxiolytic-like effects and this could be possibly attributed to the interactions among opioidergic, GABAergic and dopaminergic systems in brain regions involved in anxiety.

Keywords

Anxiolytic Mitragynine Open-field Elevated plus-maze 

Notes

Acknowledgments

We thank Ms. Vemala Devi for her advice and help with the statistical analysis. This work was made possible by the support of a Ministry of Science, Technology and Innovation (MOSTI) Research Grant and USM Research University Grant.

References

  1. 1.
    Beng GT, Hamdan MR, Siddiqui MJ, Mordi MN, Mansor SM (2011) A simple and cost effective isolation and purification protocol of mitragynine from Mitragyna speciosa Korth (ketum) leaves. Mal J Anal Sci 15:54–60Google Scholar
  2. 2.
    Boyer EW, Babu KM, Adkins JE, McCurdy CR, Halpern JH (2008) Self-treatment of opioid withdrawal using kratom (Mitragynia speciosa korth). Addiction 103:1048–1050PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Carlini EA (2003) Plants and the central nervous system. Pharmacol Biochem Behav 75:501–512PubMedCrossRefGoogle Scholar
  4. 4.
    Chittrakarn S, Sawangjaroen K, Prasettho S, Janchawee B, Keawpradub N (2008) Inhibitory effects of kratom leaf extract (Mitragyna speciosa Korth) on the rat gastrointestinal tract. J Ethnopharmacol 116:173–178PubMedCrossRefGoogle Scholar
  5. 5.
    Dilts RP, Kalivas PW (1989) Autoradiographic localization of mu-opioid and neurotensin receptors within the mesolimbic dopamine system. Brain Res 488:311–327PubMedCrossRefGoogle Scholar
  6. 6.
    Dilts RP, Kalivas PW (1990) Autoradiographic localization of delta opioid receptors within the mesocorticolimbic dopamine system using radioiodinated [2-d-penicillamine, 5-d-penicillamine] enkephalin (125I-DPDPE). Synapse 6:121–132PubMedCrossRefGoogle Scholar
  7. 7.
    Fakurazi S, Abdul Rahman S, Taufik Hidayat M, Ithnin H, Moklas MAA, Arulselvan P (2013) The combination of mitragynine and morphine prevents the development of morphine tolerance in mice. Molecules 18:666–681PubMedCrossRefGoogle Scholar
  8. 8.
    Farah Idayu N, Taufik Hidayat M, Moklas MA, Sharida F, Nurul Raudzah AR, Shamima AR, Apryani E (2011) Antidepressant-like effect of mitragynine isolated from Mitragyna speciosa Korth in mice model of depression. Phytomed 218:402–407CrossRefGoogle Scholar
  9. 9.
    Garcia AM, Martinez R, Brandão ML, Morato S (2005) Effects of apomorphine on rat behavior in the elevated plus-maze. Physiol Behav 85:440–447PubMedCrossRefGoogle Scholar
  10. 10.
    Charoenphandhu N, Teerapornpuntakit J, Lapmanee S, Dorkkam N, Krishnamra N, Charoenphandhu J (2011) Long-term swimming in an inescapable stressful environment attenuates the stimulatory effect of endurance swimming on duodenal calcium absorption in rats. J Physiol Sci 61:473–486PubMedCrossRefGoogle Scholar
  11. 11.
    Grewal KS (1932) Observations on the pharmacology of mitragynine. J Pharmacol Exp Ther 46:251–271Google Scholar
  12. 12.
    Griebel G, Simiand J, Serradeil-Le Gal C, Wagnon J, Pascal M, Scatton B, Maffrand JP, Soubrie P (2002) Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Natl Acad Sci USA 99:6370–6375PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Grundmann O, Nakajima J, Seo S, Butterweck V (2007) Anti-anxiety effects of Apocynum venetum L. in the elevated plus maze test. J Ethnopharmacol 110:406–411PubMedCrossRefGoogle Scholar
  14. 14.
    Hazim AI, Mustapha M, Mansor SM (2011) The effects on motor behaviour and short-term memory tasks in mice following an acute administration of Mitragyna speciosa alkaloid extract and mitragynine. J Med Plants Res 5:5810–5817Google Scholar
  15. 15.
    Hellión-Ibarrola MC, Ibarrola DA, Montalbetti Y, Kennedy ML, Heinichen O, Campuzano M, Tortoriello J, Fernández S, Wasowski C, Marder M, De Lima TC, Mora S (2006) The anxiolytic-like effects of Aloysia polystachya (Griseb.) Moldenke (Verbenaceae) in mice. J Ethnopharmacol 105:400–408PubMedCrossRefGoogle Scholar
  16. 16.
    Jamil MF, Subki MF, Lan TM, Majid MI, Adenan MI (2013) The effect of mitragynine on cAMP formation and mRNA expression of mu-opioid receptors mediated by chronic morphine treatment in SK-N-SH neuroblastoma cell. J Ethnopharmacol 148:135–143PubMedCrossRefGoogle Scholar
  17. 17.
    Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483–488PubMedGoogle Scholar
  18. 18.
    Khor BS, Amar JM, Adenan MI, Chong SA (2011) Mitragynine attenuates withdrawal syndrome in morphine-withdrawn zebrafish. PLoS One 6:e28340PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Klitenick MA, DeWitte P, Kalivas PW (1992) Regulation of somatodendritic dopamine release in the ventral tegmental area by opioids and GABA: an in vivo microdialysis study. J Neurosci 12:2623–2632PubMedGoogle Scholar
  20. 20.
    Langen B, Egerland U, Bernöster K, Dost R, Unverferth K, Rundfeldt C (2005) Characterization in rats of the anxiolytic potential of ELB139 [1-(4-chlorophenyl)-4-piperidin-1-yl-1, 5-dihydro-imidazol-2-on], a new agonist at the benzodiazepine binding site of the GABAA receptor. J Pharmacol Exp Ther 314:717–724PubMedCrossRefGoogle Scholar
  21. 21.
    Liu J, Garza JC, Bronner J, Kim CS, Zhang W, Lu XY (2010) Acute administration of leptin produces anxiolytic-like effects: a comparison with fluoxetine. Psychopharmacol (Berl) 207:535–545CrossRefGoogle Scholar
  22. 22.
    Macko E, Weisbach JA, Douglas B (1972) Some observations on the pharmacology of mitragynine. Arch Int Pharmacodyn Ther 198:145–161PubMedGoogle Scholar
  23. 23.
    Maruyama K, Shimoju R, Ohkubo R, Maruyama H, Kurosawa M (2012) Tactile skin stimulation increases dopamine release in the nucleus accumbens in rats. J Physiol Sci 62:259–266PubMedCrossRefGoogle Scholar
  24. 24.
    Matsumoto K, Mizowaki M, Suchitra T, Murakami Y, Takayama H, Sakai S, Aimi N, Watanabe H (1996) Central antinociceptive effects of mitragynine in mice: contribution of descending noradrenergic and serotonergic systems. Eur J Pharmacol 317:75–81PubMedCrossRefGoogle Scholar
  25. 25.
    Matsumoto K, Mizowaki M, Suchitra T, Takayama H, Sakai S, Aimi N, Watanabe H (1996) Antinociceptive action of mitragynine in mice: evidence for the involvement of supraspinal opioid receptors. Life Sci 59:1149–1155PubMedCrossRefGoogle Scholar
  26. 26.
    Matsuzaki M, Matsushita H, Tomizawa K, Matsui H (2012) Oxytocin: a therapeutic target for mental disorders. J Physiol Sci 62:441–444PubMedCrossRefGoogle Scholar
  27. 27.
    Megarbane B, Gueye P, Baud F (2003) Interactions between benzodiazepines and opioids. Ann Med Interne (Paris) 154:S64–S72Google Scholar
  28. 28.
    Nikolaus S, Antke C, Beu M, Müller HW (2010) Cortical GABA, striatal dopamine and midbrain serotonin as the key players in compulsive and anxiety disorders—results from in vivo imaging studies. Rev Neurosci 21:119–139PubMedCrossRefGoogle Scholar
  29. 29.
    Okajima D, Kudo G, Yokota H (2011) Antidepressant-like behavior in brain-specific angiogenesis inhibitor 2-deficient mice. J Physiol Sci 61:47–54PubMedCrossRefGoogle Scholar
  30. 30.
    Ozdemir E, Gursoy S, Bagcivan I (2012) The effects of serotonin/norepinephrine reuptake inhibitors and serotonin receptor agonist on morphine analgesia and tolerance in rats. J Physiol Sci 62:317–323PubMedCrossRefGoogle Scholar
  31. 31.
    Parthasarathy S, Ramanathan S, Murugaiyah V, Hamdan MR, Said MI, Lai CS, Mansor SM (2013) A simple HPLC-DAD method for the detection and quantification of psychotropic mitragynine in Mitragyna speciosa (ketum) and its products for application in forensic investigation. Forensic Sci Int 226:183–187PubMedCrossRefGoogle Scholar
  32. 32.
    Popik P, Kostakis E, Krawczyk M, Nowak G, Szewczyk B, Krieter P, Chen Z, Russek SJ, Gibbs TT, Farb DH, Skolnick P, Lippa AS, Basile AS (2006) The anxioselective agent 7-(2-chloropyridin-4-yl) pyrazolo-[1,5-a]-pyrimidin-3-yl](pyridin-2-yl)methanone (DOV 51892) is more efficacious than diazepam at enhancing GABA-gated currents at alpha1 subunit-containing GABAA receptors. J Pharmacol Exp Ther 319:244–252CrossRefGoogle Scholar
  33. 33.
    Privette TH, Terrian DM (1995) Kappa opioid agonists produce anxiolytic-like behavior on the elevated plus-maze. Psychopharmacol 118:444–450CrossRefGoogle Scholar
  34. 34.
    Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33PubMedCrossRefGoogle Scholar
  35. 35.
    Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661PubMedCrossRefGoogle Scholar
  36. 36.
    Rezayof A, Hosseini SS, Zarrindast MR (2009) Effects of morphine on rat behaviour in the elevated plus maze: the role of central amygdala dopamine receptors. Behav Brain Res 202:171–178PubMedCrossRefGoogle Scholar
  37. 37.
    Sabetghadam A, Navaratnam V, Mansor SM (2013) Dose-response relationship, acute toxicity, and therapeutic index between the alkaloid extract of Mitragyna speciosa and its main active compound mitragynine in mice. Drug Dev Res 74:23–30CrossRefGoogle Scholar
  38. 38.
    Sabetghadam A, Ramanathan S, Sasidharan S, Mansor SM (2013) Subchronic exposure to mitragynine, the principal alkaloid of Mitragyna speciosa, in rats. J Ethnopharmacol 146:815–823PubMedCrossRefGoogle Scholar
  39. 39.
    Sasaki K, Fan LW, Tien LT, Ma T, Loh HH, Ho IK (2002) The interaction of morphine and gamma-aminobutyric acid (GABA)ergic systems in anxiolytic behavior: using mu-opioid receptor knockout mice. Brain Res Bull 57:689–694PubMedCrossRefGoogle Scholar
  40. 40.
    Shader RI, Greenblatt DJ (1993) Use of benzodiazepines in anxiety disorders. N Engl J Med 328:1398–1405PubMedCrossRefGoogle Scholar
  41. 41.
    Solati J, Zarrindast M, Salari AA (2010) Dorsal hippocampal opioidergic system modulates anxiety-like behaviors in adult male Wistar rats. Psych Clin Neurosci 64:634–641CrossRefGoogle Scholar
  42. 42.
    Taufik Hidayat M, Apryani E, Nabishah B, Moklas MAA, Sharida F, Farhan MA (2010) Determination of mitragynine bound opioid receptors. Adv Med Dent Sci 3:65–70Google Scholar
  43. 43.
    Tsuda M, Suzuki T, Misawa M, Nagase H (1996) Involvement of the opioid system in the anxiolytic effect of diazepam in mice. Eur J Pharmacol 307:7–14PubMedCrossRefGoogle Scholar
  44. 44.
    Vicknasingam B, Narayanan S, Beng GT, Mansor SM (2010) The informal use of ketum (Mitragyna speciosa) for opioid withdrawal in the northern states of peninsular Malaysia and implications for drug substitution therapy. Int J Drug Policy 21:283–288PubMedCrossRefGoogle Scholar
  45. 45.
    Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2:322–328PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Watanabe K, Yano S, Horie S, Yamamoto LT (1997) Inhibitory effect of mitragynine, an alkaloid with analgesic effect from Thai medicinal plant Mitragyna speciosa, on electrically stimulated contraction of isolated guinea-pig ileum through the opioid receptor. Life Sci 60:933–942PubMedCrossRefGoogle Scholar
  47. 47.
    Yamamoto LT, Horie S, Takayama H, Aimi N, Sakai S, Yano S, Shan J, Pang PK, Ponglux D, Watanabe K (1999) Opioid receptor agonistic characteristics of mitragynine pseudoindoxyl in comparison with mitragynine derived from Thai medicinal plant Mitragyna speciosa. Gen Pharmacol 33:73–81PubMedCrossRefGoogle Scholar
  48. 48.
    Zarrindast MR, Babapoor-Farrokhran S, Babapoor-Farrokhran S, Rezayof A (2008) Involvement of opioidergic system of the ventral hippocampus, the nucleus accumbens or the central amygdala in anxiety-related behavior. Life Sci 82:1175–1181PubMedCrossRefGoogle Scholar
  49. 49.
    Zarrindast MR, Esfahani DE, Oryan S, Nasehi M, Nami MT (2013) Effects of dopamine receptor agonist and antagonists on cholestasis-induced anxiolytic-like behaviors in rats. Eur J Pharmacol 702:25–31CrossRefGoogle Scholar
  50. 50.
    Zarrindast MR, Rostami P, Zarei M, Roohbakhsh A (2005) Intracerebroventricular effects of histaminergic agents on morphine-induced anxiolysis in the elevated plus-maze in rats. Basic Clin Pharmacol Toxicol 97:276–281PubMedCrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2014

Authors and Affiliations

  • Ammar Imad Hazim
    • 1
  • Surash Ramanathan
    • 1
  • Suhanya Parthasarathy
    • 1
  • Mustapha Muzaimi
    • 2
  • Sharif Mahsufi Mansor
    • 1
  1. 1.Centre for Drug ResearchUniversiti Sains MalaysiaPenangMalaysia
  2. 2.Department of Neurosciences, School of Medical SciencesUniversiti Sains MalaysiaKubang KerianMalaysia

Personalised recommendations