The Journal of Physiological Sciences

, Volume 64, Issue 2, pp 105–112 | Cite as

Changes in systemic and pulmonary blood flow distribution in normal adult volunteers in response to posture and exercise: a phase contrast magnetic resonance imaging study

  • Derek T. H. WongEmail author
  • Kyong-Jin Lee
  • Shi-Joon Yoo
  • George Tomlinson
  • Lars Grosse-Wortmann
Original Paper


Hemodynamics are usually evaluated in the supine position at rest. This is only a snapshot of an individual’s daily activities. This study describes circulatory adaptation, as assessed by magnetic resonance imaging, to changes in position and exercise. Phase contrast magnetic resonance imaging of blood flow within systemic and pulmonary arteries and veins was performed in 24 healthy volunteers at rest in the prone and supine position and with bicycle exercise in the supine position. No change was seen in systemic blood flow when moving from prone to supine. Exercise resulted in an increased percentage of cardiac output towards the lower body. Changes in position resulted in a redistribution of blood flow within the left lung—supine positioning resulted in decreased blood flow to the left lower pulmonary vein. With exercise, both the right and left lower lobes received increased blood flow, while the upper lobes received less.


Magnetic resonance imaging Phase contrast Exercise Blood flow 


  1. 1.
    Nottin S, Vinet A, Stecken F, Nguyen LD, Ounissi F, Lecoq AM, Obert P (2002) Central and peripheral cardiovascular adaptations during a maximal cycle exercise in boys and men. Med Sci Sports Exerc 3:456–463CrossRefGoogle Scholar
  2. 2.
    Vinet A, Nottin S, Lecoq AM, Obert P (2002) Cardiovascular responses to progressive cycle exercise in healthy children and adults. Int J Sports Med 4:242–246CrossRefGoogle Scholar
  3. 3.
    Rowland T (2008) Echocardiography and circulatory response to progressive endurance exercise. Sports Med 7:541–551CrossRefGoogle Scholar
  4. 4.
    Rowland T, Obert P (2002) Doppler echocardiography for the estimation of cardiac output with exercise. Sports Med 15:973–986CrossRefGoogle Scholar
  5. 5.
    Rowland T, Garrison A, Delulio A (2003) Circulatory responses to progressive exercise: insights from positional differences. Int J Sports Med 7:512–517Google Scholar
  6. 6.
    Rowland T, Potts J, Potts T, Sandor G, Goff D, Ferrone L (2000) Cardiac responses to progressive exercise in normal children: a synthesis. Med Sci Sports Exerc 2:253–259CrossRefGoogle Scholar
  7. 7.
    Rowland T, Popowski B, Ferrone L (1997) Cardiac responses to maximal upright cycle exercise in healthy boys and men. Med Sci Sports Exerc 9:1146–1151CrossRefGoogle Scholar
  8. 8.
    Sundstedt M, Hedberg P, Jonason T, Ringqvist I, Brodin LA, Henriksen E (2004) Left ventricular volumes during exercise in endurance athletes assessed by contrast echocardiography. Acta Physiol Scand 1:45–51CrossRefGoogle Scholar
  9. 9.
    Higginbotham MB, Morris KG, Williams RS, McHale PA, Coleman RE, Cobb FR (1986) Regulation of stroke volume during submaximal and maximal upright exercise in normal man. Circ Res 2:281–291CrossRefGoogle Scholar
  10. 10.
    Hundley WG, Li HF, Hillis LD, Meshack BM, Lange RA, Willard JE, Landau C, Peshock RM (1995) Quantitation of cardiac output with velocity-encoded, phase-difference magnetic resonance imaging. Am J Cardiol 17:1250–1255CrossRefGoogle Scholar
  11. 11.
    Cheng CP, Herfkens RJ, Lightner AL, Taylor CA, Feinstein JA (2004) Blood flow conditions in the proximal pulmonary arteries and vena cavae: healthy children during upright cycling exercise. Am J Physiol Heart Circ Physiol 2:H921–H926CrossRefGoogle Scholar
  12. 12.
    Roest AA, Lamb HJ, van der Wall EE, Vliegen HW, van den Aardweg JG, Kunz P, de Roos A, Helbing WA (2004) Cardiovascular response to physical exercise in adult patients after atrial correction for transposition of the great arteries assessed with magnetic resonance imaging. Heart 6:678–684CrossRefGoogle Scholar
  13. 13.
    Roest AA, Kunz P, Lamb HJ, Helbing WA, van der Wall EE, de Roos A (2001) Biventricular response to supine physical exercise in young adults assessed with ultrafast magnetic resonance imaging. Am J Cardiol 5:601–605CrossRefGoogle Scholar
  14. 14.
    Roest AA, de Roos A, Lamb HJ, Helbing WA, van den Aardweg JG, Doornbos J, van der Wall EE, Kunz P (2003) Tetralogy of Fallot: postoperative delayed recovery of left ventricular stroke volume after physical exercise assessment with fast MR imaging. Radiology 1:278–284CrossRefGoogle Scholar
  15. 15.
    Roest AA, Helbing WA, Kunz P, van den Aardweg JG, Lamb HJ, Vliegen HW, van der Wall EE, de Roos A (2002) Exercise MR imaging in the assessment of pulmonary regurgitation and biventricular function in patients after tetralogy of fallot repair. Radiology 1:204–211CrossRefGoogle Scholar
  16. 16.
    Sundareswaran KS, Pekkan K, Dasi LP, Whitehead K, Sharma S, Kanter KR, Fogel MA, Yoganathan AP (2008) The total cavopulmonary connection resistance: a significant impact on single ventricle hemodynamics at rest and exercise. Am J Physiol Heart Circ Physiol 6:H2427–H2435CrossRefGoogle Scholar
  17. 17.
    Whitehead KK, Pekkan K, Kitajima HD, Paridon SM, Yoganathan AP, Fogel MA (2007) Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 11(Suppl):I165–I171Google Scholar
  18. 18.
    Hofman MB, Visser FC, van Rossum AC, Vink QM, Sprenger M, Westerhof N (1995) In vivo validation of magnetic resonance blood volume flow measurements with limited spatial resolution in small vessels. Magn Reson Med 6:778–784CrossRefGoogle Scholar
  19. 19.
    Tops LF, Roest AA, Lamb HJ, Vliegen HW, Helbing WA, van der Wall EE, de Roos A (2005) Intraatrial repair of transposition of the great arteries: use of MR imaging after exercise to evaluate regional systemic right ventricular function. Radiology 3:861–867CrossRefGoogle Scholar
  20. 20.
    Weber TF, von Tengg-Kobligk H, Kopp-Schneider A, Ley-Zaporozhan J, Kauczor HU, Ley S (2011) High-resolution phase-contrast MRI of aortic and pulmonary blood flow during rest and physical exercise using a MRI compatible bicycle ergometer. Eur J Radiol 1:103–108CrossRefGoogle Scholar
  21. 21.
    Steeden JA, Atkinson D, Taylor AM, Muthurangu V (2010) Assessing vascular response to exercise using a combination of real-time spiral phase contrast MR and noninvasive blood pressure measurements. J Magn Reson Imaging 4:997–1003CrossRefGoogle Scholar
  22. 22.
    Frayne R, Steinman DA, Ethier CR, Rutt BK (1995) Accuracy of MR phase contrast velocity measurements for unsteady flow. J Magn Reson Imaging 4:428–431CrossRefGoogle Scholar
  23. 23.
    Powell AJ, Maier SE, Chung T, Geva T (2000) Phase-velocity cine magnetic resonance imaging measurement of pulsatile blood flow in children and young adults: in vitro and in vivo validation. Pediatr Cardiol 2:104–110CrossRefGoogle Scholar
  24. 24.
    Prakash A, Garg R, Marcus EN, Reynolds G, Geva T, Powell AJ (2006) Faster flow quantification using sensitivity encoding for velocity-encoded cine magnetic resonance imaging: in vitro and in vivo validation. J Magn Reson Imaging 3:676–682CrossRefGoogle Scholar
  25. 25.
    Stahlberg F, Mogelvang J, Thomsen C, Nordell B, Stubgaard M, Ericsson A, Sperber G, Greitz D, Larsson H, Henriksen O (1989) A method for MR quantification of flow velocities in blood and CSF using interleaved gradient-echo pulse sequences. Magn Reson Imaging 6:655–667CrossRefGoogle Scholar
  26. 26.
    Evans AJ, Iwai F, Grist TA, Sostman HD, Hedlund LW, Spritzer CE, Negro-Vilar R, Beam CA, Pelc NJ (1993) Magnetic resonance imaging of blood flow with a phase subtraction technique. In vitro and in vivo validation. Invest Radiol 2:109–115CrossRefGoogle Scholar
  27. 27.
    Goo HW, Al-Otay A, Grosse-Wortmann L, Wu S, Macgowan CK, Yoo SJ (2009) Phase-contrast magnetic resonance quantification of normal pulmonary venous return. J Magn Reson Imaging 3:588–594CrossRefGoogle Scholar
  28. 28.
    Grosse-Wortmann L, Al-Otay A, Goo HW, Macgowan CK, Coles JG, Benson LN, Redington AN, Yoo SJ (2007) Anatomical and functional evaluation of pulmonary veins in children by magnetic resonance imaging. J Am Coll Cardiol 9:993–1002CrossRefGoogle Scholar
  29. 29.
    Valsangiacomo ER, Barrea C, Macgowan CK, Smallhorn JF, Coles JG, Yoo SJ (2003) Phase-contrast MR assessment of pulmonary venous blood flow in children with surgically repaired pulmonary veins. Pediatr Radiol 9:607–613CrossRefGoogle Scholar
  30. 30.
    Clifford PS, Hellsten Y (2004) Vasodilatory mechanisms in contracting skeletal muscle. J Appl Physiol 1:393–403CrossRefGoogle Scholar
  31. 31.
    Hughson RL (2003) Regulation of blood flow at the onset of exercise by feed forward and feedback mechanisms. Can J Appl Physiol 5:774–787CrossRefGoogle Scholar
  32. 32.
    Proctor DN, Parker BA (2006) Vasodilation and vascular control in contracting muscle of the aging human. Microcirculation 4:315–327CrossRefGoogle Scholar
  33. 33.
    Tschakovsky ME, Shoemaker JK, Hughson RL (1996) Vasodilation and muscle pump contribution to immediate exercise hyperemia. Am J Physiol 4(Pt 2):H1697–H1701Google Scholar
  34. 34.
    Petersson J, Rohdin M, Sanchez-Crespo A, Nyren S, Jacobsson H, Larsson SA, Lindahl SG, Linnarsson D, Neradilek B, Polissar NL, Glenny RW, Mure M (2009) Regional lung blood flow and ventilation in upright humans studied with quantitative SPECT. Respir Physiol Neurobiol 1:54–60CrossRefGoogle Scholar
  35. 35.
    Petersson J, Sanchez-Crespo A, Rohdin M, Montmerle S, Nyren S, Jacobsson H, Larsson SA, Lindahl SG, Linnarsson D, Glenny RW, Mure M (2004) Physiological evaluation of a new quantitative SPECT method measuring regional ventilation and perfusion. J Appl Physiol 3:1127–1136Google Scholar
  36. 36.
    Petersson J, Rohdin M, Sanchez-Crespo A, Nyren S, Jacobsson H, Larsson SA, Lindahl SG, Linnarsson D, Neradilek B, Polissar NL, Glenny RW, Mure M (2007) Posture primarily affects lung tissue distribution with minor effect on blood flow and ventilation. Respir Physiol Neurobiol 3:293–303CrossRefGoogle Scholar
  37. 37.
    O’Donnell CP, Lock JE, Powell AJ, Perry SB (2003) Compression of pulmonary veins between the left atrium and the descending aorta. Am J Cardiol 2:248–251CrossRefGoogle Scholar
  38. 38.
    Yamaji H, Hina K, Kawamura H, Murakami T, Murakami M, Yamamoto K, Hirohata A, Miyoshi T, Hirohata S, Kusachi S (2008) Prone position is essential for detection of pulmonary vein pseudostenosis by enhanced multidetector computed tomography in patients who undergo pulmonary vein isolation. Circ J 9:1460–1464CrossRefGoogle Scholar
  39. 39.
    Sylvester JT, Shimoda LA, Aaronson PI, Ward JP (2012) Hypoxic pulmonary vasoconstriction. Physiol Rev 1:367–520CrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2013

Authors and Affiliations

  • Derek T. H. Wong
    • 1
    • 2
    Email author
  • Kyong-Jin Lee
    • 1
  • Shi-Joon Yoo
    • 1
    • 3
  • George Tomlinson
    • 4
  • Lars Grosse-Wortmann
    • 1
    • 3
  1. 1.The Labatt Family Heart Centre at the Hospital for Sick Children, Department of PaediatricsUniversity of TorontoOntarioCanada
  2. 2.Department of Pediatric Cardiology, Children’s Hospital of Eastern OntarioUniversity of OttawaOttawaCanada
  3. 3.Department of Diagnostic Imaging, Hospital for Sick ChildrenUniversity of TorontoOntarioCanada
  4. 4.Division of Clinical Decision-Making and Health Care, Toronto General Research InstituteUniversity of TorontoOntarioCanada

Personalised recommendations