Advertisement

The Journal of Physiological Sciences

, Volume 64, Issue 2, pp 97–104 | Cite as

Effects of food deprivation on the hypothalamic feeding-regulating peptides gene expressions in serotonin depleted rats

  • Mitsuhiro Yoshimura
  • Marina Hagimoto
  • Takanori Matsuura
  • Junichi Ohkubo
  • Motoko Ohno
  • Takashi Maruyama
  • Toru Ishikura
  • Hirofumi Hashimoto
  • Tetsuya Kakuma
  • Hironobu Yoshimatsu
  • Kiyoshi Terawaki
  • Yasuhito Uezono
  • Yumiko Toyohira
  • Nobuyuki Yanagihara
  • Yoichi Ueta
Original Paper

Abstract

We examined the effects of serotonin (5-HT) depletion induced by peripheral injection of 5-HT synthesis inhibitor p-chlorophenylalanine (PCPA) on the expression of feeding-regulating peptides expressions by using in situ hybridization histochemistry in adult male Wistar rats. PCPA pretreatment had no significant effect on basal levels of oxytocin, corticotropin-releasing hormone (CRH), thyrotropin-releasing hormone (TRH), pro-opiomelanocortin (POMC), cocaine and amphetamine-regulated transcript (CART), neuropeptide-Y (NPY), agouti-related protein (AgRP), melanin-concentrating hormone (MCH) or orexin in the hypothalamus. Food deprivation for 48 h caused a significant decrease in CRH, TRH, POMC, and CART, and a significant increase in NPY, AgRP and MCH. After PCPA treatment, POMC and CART did not decrease despite food deprivation. NPY was significantly increased by food deprivation with PCPA, but was attenuated compared to food deprivation without PCPA. These results suggest that the serotonergic system in the hypothalamus may be involved in the gene expression of POMC, CART, and NPY related to feeding behavior.

Keywords

Serotonin Feeding Neuropeptides Hypothalamus p-chlorophenylalanine 

Notes

Acknowledgments

We thank Kanako Shoguchi for her technical assistance and Christopher Paul Carman for his critical reading and language editing of the manuscript. This paper was supported by Grant-in-Aid for the Third-term Comprehensive 10-year Strategy for Cancer Control (H22—Third-term Cancer—General-035) from the Ministry of Health, Labor and Welfare, Japan, the Naito Foundation, Japan, and a grant from Ajinomoto Co. Ltd., Japan.

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Monti JM (2011) Serotonin control of sleep-wake behavior. Sleep Med Rev 15(4):269–281PubMedCrossRefGoogle Scholar
  2. 2.
    Wu Q, Clark MS, Palmiter RD (2012) Deciphering a neuronal circuit that mediates appetite. Nature 483(7391):594–597PubMedCrossRefGoogle Scholar
  3. 3.
    Meneses A, Liy-Salmeron G (2012) Serotonin and emotion, learning and memory. Rev Neurosci 23:543–553PubMedCrossRefGoogle Scholar
  4. 4.
    Deneris ES (2011) Molecular genetics of mouse serotonin neurons across the lifespan. Neuroscience 197:17–27PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404(6778):661–671PubMedGoogle Scholar
  6. 6.
    Ramos EJ, Meguid MM, Campos AC, Coelho JC (2005) Neuropeptide Y, alpha-melanocyte-stimulating hormone, and monoamines in food intake regulation. Nutrition 21(2):269–279PubMedCrossRefGoogle Scholar
  7. 7.
    Heisler LK et al (2002) Activation of central melanocortin pathways by fenfluramine. Science 297(5581):609–611PubMedCrossRefGoogle Scholar
  8. 8.
    Harbuz MS, Chalmers J, De Souza L, Lightman SL (1993) Stress-induced activation of CRF and c-fos mRNAs in the paraventricular nucleus are not affected by serotonin depletion. Brain Res 609(1–2):167–173PubMedCrossRefGoogle Scholar
  9. 9.
    Ueta Y, Levy A, Chowdrey HS, Lightman SL (1995) Inhibition of hypothalamic nitric oxide synthase gene expression in the rat paraventricular nucleus by food deprivation is independent of serotonin depletion. J Neuroendocrinol 7(11):861–865PubMedCrossRefGoogle Scholar
  10. 10.
    Conde GL, Renshaw D, Lightman SL, Harbuz MS (1998) Serotonin depletion does not alter lipopolysaccharide-induced activation of the rat paraventricular nucleus. J Endocrinol 156(2):245–251PubMedCrossRefGoogle Scholar
  11. 11.
    Brady LS, Smith MA, Gold PW, Herkenham M (1990) Altered expression of hypothalamic neuropeptide mRNAs in food-restricted and food-deprived rats. Neuroendocrinology 52(5):441–447PubMedCrossRefGoogle Scholar
  12. 12.
    Shi ZX, Levy A, Lightman SL (1993) The effect of dietary protein on thyrotropin-releasing hormone and thyrotropin gene expression. Brain Res 606(1):1–4PubMedCrossRefGoogle Scholar
  13. 13.
    Blake NG, Eckland DJ, Foster OJ, Lightman SL (1991) Inhibition of hypothalamic thyrotropin-releasing hormone messenger ribonucleic acid during food deprivation. Endocrinology 129(5):2714–2718PubMedCrossRefGoogle Scholar
  14. 14.
    Morley JE, Levine AS, Gosnell BA, Kneip J, Grace M (1987) Effect of neuropeptide Y on ingestive behaviors in the rat. Am J Physiol 252(3 Pt 2):R599–R609PubMedGoogle Scholar
  15. 15.
    Herve C, Fellmann D (1997) Changes in rat melanin-concentrating hormone and dynorphin messenger ribonucleic acids induced by food deprivation. Neuropeptides 31(3):237–242PubMedCrossRefGoogle Scholar
  16. 16.
    Bonn M, Schmitt A, Lesch KP, Van Bockstaele EJ, Asan E (2012) Serotonergic innervation and serotonin receptor expression of NPY-producing neurons in the rat lateral and basolateral amygdaloid nuclei. Brain Struct Funct 218:421–435PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Roepke TA, Smith AW, Ronnekleiv OK, Kelly MJ (2012) Serotonin 5-HT2C receptor-mediated inhibition of the M-current in hypothalamic POMC neurons. Am J Physiol Endocrinol Metab 302(11):E1399–E1406PubMedCrossRefGoogle Scholar
  18. 18.
    Zendehdel M et al (2013) The effect of serotonergic system on nociceptin/orphanin FQ induced food intake in chicken. J Physiolog Sci Jps 63(4):271–277CrossRefGoogle Scholar
  19. 19.
    Wetherell JR, Fosbraey P, French MC (1989) A comparison of the distribution of neurotransmitters in brain regions of the rat and guinea-pig using a chemiluminescent method and HPLC with electrochemical detection. J Neurochem 53(5):1519–1526PubMedCrossRefGoogle Scholar
  20. 20.
    Hashimoto H et al (2007) Parathyroid hormone-related protein induces cachectic syndromes without directly modulating the expression of hypothalamic feeding-regulating peptides. Clin Cancer Res Off J Am Assoc Cancer Res 13(1):292–298CrossRefGoogle Scholar
  21. 21.
    Suzuki H et al (2011) Similar changes of hypothalamic feeding-regulating peptides mRNAs and plasma leptin levels in PTHrP-, LIF-secreting tumors-induced cachectic rats and adjuvant arthritic rats. Int J Cancer 128(9):2215–2223PubMedCrossRefGoogle Scholar
  22. 22.
    Ueta Y, Levy A, Chowdrey HS, Lightman SL (1995) Hypothalamic nitric oxide synthase gene expression is regulated by thyroid hormones. Endocrinology 136(10):4182–4187PubMedGoogle Scholar
  23. 23.
    Haleem DJ, Haider S (1996) Food restriction decreases serotonin and its synthesis rate in the hypothalamus. Neuroreport 7(6):1153–1156PubMedCrossRefGoogle Scholar
  24. 24.
    Haider S, Haleem DJ (2000) Decreases of brain serotonin following a food restriction schedule of 4 weeks in male and female rats. Med Sci Monit Int Med J Exp Clin Res 6(6):1061–1067Google Scholar
  25. 25.
    Halaas JL et al (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269(5223):543–546PubMedCrossRefGoogle Scholar
  26. 26.
    Higuchi T, Mizuno A, Narita K, Ichimaru T, Murata T (2012) Leptin resistance does not induce hyperphagia in the rat. J Physiolog Sci Jps 62(1):45–51CrossRefGoogle Scholar
  27. 27.
    Hashimoto H et al (2010) Centrally administered ghrelin potently inhibits water intake induced by angiotensin II and hypovolemia in rats. J Physiolog Sci Jps 60(1):19–25CrossRefGoogle Scholar
  28. 28.
    Yada T, Maejima Y, Udval S (2010) Nesfatin-1-oxytocin-POMC pathway in the hypothalamic paraventricular-brain stem axis causes anorexia. J Pharmacol Sci 112:34p–34pGoogle Scholar
  29. 29.
    Yue C, Mutsuga N, Sugimura Y, Verbalis J, Gainer H (2008) Differential kinetics of oxytocin and vasopressin heteronuclear RNA expression in the rat supraoptic nucleus in response to chronic salt loading in vivo. J Neuroendocrinol 20(2):227–232PubMedCrossRefGoogle Scholar
  30. 30.
    Heisler LK et al (2007) Serotonin activates the hypothalamic-pituitary-adrenal axis via serotonin 2C receptor stimulation. J Neurosci Off J Soc Neurosci 27(26):6956–6964CrossRefGoogle Scholar
  31. 31.
    Vrang N, Tang-Christensen M, Larsen PJ, Kristensen P (1999) Recombinant CART peptide induces c-Fos expression in central areas involved in control of feeding behaviour. Brain Res 818(2):499–509PubMedCrossRefGoogle Scholar
  32. 32.
    Sohn JW et al (2011) Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels. Neuron 71(3):488–497PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Jean A et al (2007) Anorexia induced by activation of serotonin 5-HT4 receptors is mediated by increases in CART in the nucleus accumbens. Proc Natl Acad Sci USA 104(41):16335–16340PubMedCrossRefGoogle Scholar
  34. 34.
    Dryden S, Wang Q, Frankish HM, Pickavance L, Williams G (1995) The serotonin (5-HT) antagonist methysergide increases neuropeptide Y (NPY) synthesis and secretion in the hypothalamus of the rat. Brain Res 699(1):12–18PubMedCrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer Japan 2013

Authors and Affiliations

  • Mitsuhiro Yoshimura
    • 1
  • Marina Hagimoto
    • 1
  • Takanori Matsuura
    • 1
  • Junichi Ohkubo
    • 1
  • Motoko Ohno
    • 1
  • Takashi Maruyama
    • 1
  • Toru Ishikura
    • 1
  • Hirofumi Hashimoto
    • 1
  • Tetsuya Kakuma
    • 2
  • Hironobu Yoshimatsu
    • 2
  • Kiyoshi Terawaki
    • 3
  • Yasuhito Uezono
    • 3
  • Yumiko Toyohira
    • 4
  • Nobuyuki Yanagihara
    • 4
  • Yoichi Ueta
    • 1
  1. 1.Department of Physiology, School of MedicineUniversity of Occupational and Environmental HealthYahatanishi-kuJapan
  2. 2.Department of Internal Medicine 1, Faculty of MedicineOita UniversityOitaJapan
  3. 3.Division of Cancer Pathophysiology, Group for Development of Molecular Diagnostics and Individualized TherapyNational Cancer Center Research InstituteTokyoJapan
  4. 4.Department of Pharmacology, School of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan

Personalised recommendations