Advertisement

The Journal of Physiological Sciences

, Volume 62, Issue 6, pp 441–444 | Cite as

Oxytocin: a therapeutic target for mental disorders

  • Mitsuhiro Matsuzaki
  • Hiroaki Matsushita
  • Kazuhito Tomizawa
  • Hideki Matsui
Review

Abstract

We review here that oxytocin (OT) is released into blood and within distinct brain regions in response to stressful and social stimuli, and has been shown to have an antidepressant-like effect in animal studies. Clinical reports suggest OT to be a promising drug for psychiatric diseases such as depression, anxiety disorders, schizophrenia, and autism. OT may also have therapeutic potential in the treatment of major depressive disorders, even though OT administered into blood does not readily cross the blood–brain barrier. Physiological functions such as sexual activity and mating induce the release of OT in the central nervous system. A drug for the treatment of sexual dysfunction, sildenafil, enhances the electrically evoked release of OT from the posterior pituitary. This drug has antidepressant-like effects through activation of an OT signaling pathway. These results suggest that sildenafil may have promise as a potential antidepressant.

Keywords

Oxytocin Depression Sildenafil CREB MAP kinase 

References

  1. 1.
    Caldwell HK, Young WS III (2006) Oxytocin and vasopressin: genetics and behavioral implications. In: Lim R (ed) Neuroactive proteins and peptides. Springer, New York, pp 573–607Google Scholar
  2. 2.
    Baskerville TA, Douglas AJ (2010) Dopamine and oxytocin interactions underlying behaviors: potential contributions to behavioral disorders. CNS Neurosci Ther 16:e92–123PubMedCrossRefGoogle Scholar
  3. 3.
    Viero C, Shibuya I, Kitamura N, Verkhratsky A, Fujihara H, Katoh A et al (2010) Oxytocin: crossing the bridge between basic science and pharmacotherapy. CNS Neurosci Ther 16:e138–e156PubMedCrossRefGoogle Scholar
  4. 4.
    Katoh A, Fujihara H, Ohbuchi T, Onaka T, Hashimoto T, Kawata M et al (2011) Highly visible expression of an oxytocin-monomeric red fluorescent protein 1 fusion gene in the hypothalamus and posterior pituitary of transgenic rats. Endocrinology 152:2768–2774PubMedCrossRefGoogle Scholar
  5. 5.
    Tomizawa K, Iga N, Lu YF, Moriwaki A, Matsushita M, Li ST et al (2003) Oxytocin improves long-lasting spatial memory during motherhood through MAP kinase cascade. Nat Neurosci 6:384–390PubMedCrossRefGoogle Scholar
  6. 6.
    Neumann ID (2008) Brain oxytocin: a key regulator of emotional and social behaviours in both females and males. J Neuroendocrinol 20:858–865PubMedCrossRefGoogle Scholar
  7. 7.
    Donaldson ZR, Young LJ (2008) Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322:900–904PubMedCrossRefGoogle Scholar
  8. 8.
    Numan M, Insel TR (2003) The neurobiology of parental behavior. Springer, New JerseyGoogle Scholar
  9. 9.
    Takayanagi Y, Yoshida M, Bielsky IF, Ross HE, Kawamata M, Onaka T et al (2005) Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc Natl Acad Sci USA 102:16096–16101PubMedCrossRefGoogle Scholar
  10. 10.
    Jin D, Liu HX, Hirai H, Torashima T, Nagai T, Lopatina O et al (2007) CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446:41–45PubMedCrossRefGoogle Scholar
  11. 11.
    Ross HE, Cole CD, Smith Y, Neumann ID, Landgraf R, Murphy AZ et al (2009) Characterization of the oxytocin system regulating affiliative behavior in female prairie voles. Neuroscience 162:892–903PubMedCrossRefGoogle Scholar
  12. 12.
    Ross HE, Young LJ (2009) Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front Neuroendocrinol 30:534–547PubMedCrossRefGoogle Scholar
  13. 13.
    Matsushita H, Tomizawa K, Okimoto N, Nishiki T, Ohmori I, Matsui H (2010) Oxytocin mediates the antidepressant effects of mating behavior in male mice. Neurosci Res 68:151–153PubMedCrossRefGoogle Scholar
  14. 14.
    Matsushita H, Matsuzaki M, Han XJ, Nishiki T, Ohmori I, Michiue H et al (2012) Antidepressant-like effect of sildenafil through oxytocin-dependent cyclic AMP response element-binding protein phosphorylation. Neuroscience 200:13–18PubMedCrossRefGoogle Scholar
  15. 15.
    Frasch A, Zetzsche T, Steiger A, Jirikowski GF (1995) Reduction of plasma oxytocin levels in patients suffering from major depression. Adv Exp Med Biol 395:257–258PubMedGoogle Scholar
  16. 16.
    Zetzsche T, Frasch A, Jirikowski GF, Murck H, Steiger A (1996) Nocturnal oxytocin secretion is reduced in major depression. Biol Psychiatry 39:584CrossRefGoogle Scholar
  17. 17.
    Scantamburlo G, Hansenne M, Fuchs S, Pitchot W, Marechal P, Pequeux C et al (2007) Plasma oxytocin levels and anxiety in patients with major depression. Psychoneuroendocrinology 32:407–410PubMedCrossRefGoogle Scholar
  18. 18.
    Thompson RJ, Parker KJ, Hallmayer JF, Waugh CE, Gotlib IH (2011) Oxytocin receptor gene polymorphism (rs2254298) interacts with familial risk for psychopathology to predict symptoms of depression and anxiety in adolescent girls. Psychoneuroendocrinology 36:144–147PubMedCrossRefGoogle Scholar
  19. 19.
    Rubin LH, Carter CS, Drogos L, Pournajafi-Nazarloo H, Sweeney JA, Maki PM (2010) Peripheral oxytocin is associated with reduced symptom severity in schizophrenia. Schizophr Res 124:13–21PubMedCrossRefGoogle Scholar
  20. 20.
    Munesue T, Yokoyama S, Nakamura K, Anitha A, Yamada K, Hayashi K et al (2010) Two genetic variants of CD38 in subjects with autism spectrum disorder and controls. Neurosci Res 67:181–191PubMedCrossRefGoogle Scholar
  21. 21.
    Waldherr M, Neumann ID (2007) Centrally released oxytocin mediates mating-induced anxiolysis in male rats. Proc Natl Acad Sci USA 104:16681–16684PubMedCrossRefGoogle Scholar
  22. 22.
    Carmichael MS, Humbert R, Dixen J, Palmisano G, Greenleaf W, Davidson JM (1987) Plasma oxytocin increases in the human sexual response. J Clin Endocrinol Metab 64:27–31PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang Z, Klyachko V, Jackson MB (2007) Blockade of phosphodiesterase type 5 enhances rat neurohypophysial excitability and electrically evoked oxytocin release. J Physiol 584:137–147PubMedCrossRefGoogle Scholar
  24. 24.
    Arletti R, Bertolini A (1987) Oxytocin acts as an antidepressant in two animal models of depression. Life Sci 41:1725–1730PubMedCrossRefGoogle Scholar
  25. 25.
    Arletti R, Benelli A, Poggioli R, Luppi P, Menozzi B, Bertolini A (1995) Aged rats are still responsive to the antidepressant and memory-improving effects of oxytocin. Neuropeptides 29:177–182PubMedCrossRefGoogle Scholar
  26. 26.
    Nowakowska E, Kus K, Bobkiewicz-Kozowska T, Hertmanowska H (2002) Role of neuropeptides in antidepressant and memory improving effects of venlafaxine. Pol J Pharmacol 54:605–613PubMedGoogle Scholar
  27. 27.
    Chaviaras S, Mak P, Ralph D, Krishnan L, Broadbear JH (2010) Assessing the antidepressant-like effects of carbetocin, an oxytocin agonist, using a modification of the forced swimming test. Psychopharmacology 210:35–43PubMedCrossRefGoogle Scholar
  28. 28.
    Ring RH, Schechter LE, Leonard SK, Dwyer JM, Platt BJ, Graf R et al (2010) Receptor and behavioral pharmacology of WAY-267464, a non-peptide oxytocin receptor agonist. Neuropharmacology 58:69–77PubMedCrossRefGoogle Scholar
  29. 29.
    Ozsoy S, Esel E, Kula M (2009) Serum oxytocin levels in patients with depression and the effects of gender and antidepressant treatment. Psychiatry Res 169:249–252PubMedCrossRefGoogle Scholar
  30. 30.
    Holt-Lunstad J, Birmingham W, Light KC (2011) The influence of depressive symptomatology and perceived stress on plasma and salivary oxytocin before, during and after a support enhancement intervention. Psychoneuroendocrinology 36:1249–1256PubMedCrossRefGoogle Scholar
  31. 31.
    Skrundz M, Bolten M, Nast I, Hellhammer DH, Meinlschmidt G (2011) Plasma oxytocin concentration during pregnancy is associated with development of postpartum depression. Neuropsychopharmacology 36:1886–1893PubMedCrossRefGoogle Scholar
  32. 32.
    Krüger TH, Haake P, Hartmann U, Schedlowski M, Exton MS (2002) Orgasm-induced prolactin secretion: feedback control of sexual drive? Neurosci Biobehav Rev 26:31–44PubMedCrossRefGoogle Scholar
  33. 33.
    Brody S (2006) Blood pressure reactivity to stress is better for people who recently had penile–vaginal intercourse than for people who had other or no sexual activity. Biol Psychol 71:214–222PubMedCrossRefGoogle Scholar
  34. 34.
    Harrison WM, Rabkin JG, Ehrhardt AA, Stewart JW, McGrath PJ, Ross D et al (1986) Effects of antidepressant medication on sexual function: a controlled study. J Clin Psychopharmacol 6:144–149PubMedCrossRefGoogle Scholar
  35. 35.
    Montejo AL, Llorca G, Izquierdo JA, Rico-Villademoros F (2001) Incidence of sexual dysfunction associated with antidepressant agents: a prospective multicenter study of 1022 outpatients. J Clin Psychiatry 62(suppl 3):10–21PubMedGoogle Scholar
  36. 36.
    Boolell M, Gepi-Attee S, Gingell JC, Allen MJ (1996) Sildenafil, anovel effective oral therapy for male erectile dysfunction. Br J Urol 78:257–261PubMedCrossRefGoogle Scholar
  37. 37.
    Shin MS, Ko IG, Sung YH, Kim SE, Kim BK, Kim CJ et al (2010) Vardenafil enhances oxytocin expression in the paraventricular nucleus without sexual stimulation. Int Neurourol J 14:213–219PubMedCrossRefGoogle Scholar
  38. 38.
    D’Sa C, Duman RS (2002) Antidepressants and neuroplasticity. Bipolar Disord 4:183–194PubMedCrossRefGoogle Scholar
  39. 39.
    Gourley SL, Wu FJ, Kiraly DD, Ploski JE, Kedves AT, Duman RS et al (2008) Regulation of neurogenesis and gliogenesis by stress and antidepressant treatment. Biol Psychiatry 63:353–359PubMedCrossRefGoogle Scholar
  40. 40.
    Duric V, Banasr M, Licznerski P, Schmidt HD, Stockmeier CA, Simen AA et al (2010) A negative regulator of MAP kinase causes depressive behavior. Nat Med 16:1328–1332PubMedCrossRefGoogle Scholar
  41. 41.
    Berry A, Bellisario V, Capoccia S, Tirassa P, Calza A, Alleva E et al (2012) Social deprivation stress is a triggering factor for the emergence of anxiety- and depression-like behaviours and leads to reduced brain BDNF levels in C57BL/6J mice. Psychoneuroendocrinology 37:762–772PubMedCrossRefGoogle Scholar
  42. 42.
    Okimoto N, Bosch OJ, Slattery DA, Pflaum K, Matsushita H, Wei FY et al (2012) RGS2 mediates the anxiolytic effect of oxytocin. Brain Res 1453:26–33PubMedCrossRefGoogle Scholar
  43. 43.
    Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127PubMedCrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer 2012

Authors and Affiliations

  • Mitsuhiro Matsuzaki
    • 1
  • Hiroaki Matsushita
    • 1
  • Kazuhito Tomizawa
    • 2
  • Hideki Matsui
    • 1
  1. 1.Department of PhysiologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
  2. 2.Department of Molecular Physiology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan

Personalised recommendations