The Journal of Physiological Sciences

, Volume 62, Issue 4, pp 299–307

Endochondral bone growth, bone calcium accretion, and bone mineral density: how are they related?

  • Kannikar Wongdee
  • Nateetip Krishnamra
  • Narattaphol Charoenphandhu
Review

Abstract

Endochondral bone growth in young growing mammals or adult mammals with persistent growth plates progresses from proliferation, maturation and hypertrophy of growth plate chondrocytes to mineralization of cartilaginous matrix to form an osseous tissue. This complex process is tightly regulated by a number of factors with different impacts, such as genetics, endocrine/paracrine factors [e.g., PTHrP, 1,25(OH)2D3, IGF-1, FGFs, and prolactin], and nutritional status (e.g., dietary calcium and vitamin D). Despite a strong link between growth plate function and elongation of the long bone, little is known whether endochondral bone growth indeed determines bone calcium accretion, bone mineral density (BMD), and/or peak bone mass. Since the process ends with cartilaginous matrix calcification, an increase in endochondral bone growth typically leads to more calcium accretion in the primary spongiosa and thus higher BMD. However, in lactating rats with enhanced trabecular bone resorption, bone elongation is inversely correlated with BMD. Although BMD can be increased by factors that enhance endochondral bone growth, the endochondral bone growth itself is unlikely to be an important determinant of peak bone mass since it is strongly determined by genetics. Therefore, endochondral bone growth and bone elongation are associated with calcium accretion only in a particular subregion of the long bone, but do not necessarily predict BMD and peak bone mass.

Keywords

Bone mineral density (BMD) Exercise Intestinal calcium absorption Peak bone mass Pregnancy Vitamin D 

References

  1. 1.
    Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 40:46–62PubMedCrossRefGoogle Scholar
  2. 2.
    Burdan F, Szumiło J, Korobowicz A, Farooquee R, Patel S, Patel A, Dave A, Szumiło M, Solecki M, Klepacz R, Dudka J (2009) Morphology and physiology of the epiphyseal growth plate. Folia Histochem Cytobiol 47:5–16PubMedCrossRefGoogle Scholar
  3. 3.
    Villemure I, Stokes IAF (2009) Growth plate mechanics and mechanobiology. A survey of present understanding. J Biomech 42:1793–1803PubMedCrossRefGoogle Scholar
  4. 4.
    Kierszenbaum AL, Tres LL (2012) Osteogenesis. In: Kierszenbaum AL, Tres LL (eds) Histology and cell biology: an introduction to pathology, 3rd edn. Saunders, Philadelphia, pp 151–168CrossRefGoogle Scholar
  5. 5.
    Plochocki JH, Riscigno CJ, Garcia M (2006) Functional adaptation of the femoral head to voluntary exercise. Anat Rec A Discov Mol Cell Evol Biol 288:776–781PubMedGoogle Scholar
  6. 6.
    Fujimura R, Ashizawa N, Watanabe M, Mukai N, Amagai H, Fukubayashi T, Hayashi K, Tokuyama K, Suzuki M (1997) Effect of resistance exercise training on bone formation and resorption in young male subjects assessed by biomarkers of bone metabolism. J Bone Miner Res 12:656–662PubMedCrossRefGoogle Scholar
  7. 7.
    Gafni RI, McCarthy EF, Hatcher T, Meyers JL, Inoue N, Reddy C, Weise M, Barnes KM, Abad V, Baron J (2002) Recovery from osteoporosis through skeletal growth: early bone mass acquisition has little effect on adult bone density. FASEB J 16:736–738PubMedGoogle Scholar
  8. 8.
    van der Eerden BCJ, Karperien M, Wit JM (2003) Systemic and local regulation of the growth plate. Endocr Rev 24:782–801PubMedCrossRefGoogle Scholar
  9. 9.
    Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423:332–336PubMedCrossRefGoogle Scholar
  10. 10.
    Lai LP, Mitchell J (2005) Indian hedgehog: its roles and regulation in endochondral bone development. J Cell Biochem 96:1163–1173PubMedCrossRefGoogle Scholar
  11. 11.
    Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273:613–622PubMedCrossRefGoogle Scholar
  12. 12.
    Lee K, Lanske B, Karaplis AC, Deeds JD, Kohno H, Nissenson RA, Kronenberg HM, Segre GV (1996) Parathyroid hormone-related peptide delays terminal differentiation of chondrocytes during endochondral bone development. Endocrinology 137:5109–5118PubMedCrossRefGoogle Scholar
  13. 13.
    Nurminskaya M, Linsenmayer TF (1996) Identification and characterization of up-regulated genes during chondrocyte hypertrophy. Dev Dyn 206:260–271PubMedCrossRefGoogle Scholar
  14. 14.
    Huebner JL, Johnson KA, Kraus VB, Terkeltaub RA (2009) Transglutaminase 2 is a marker of chondrocyte hypertrophy and osteoarthritis severity in the Hartley guinea pig model of knee OA. Osteoarthr Cartil 17:1056–1064PubMedCrossRefGoogle Scholar
  15. 15.
    Inada M, Yasui T, Nomura S, Miyake S, Deguchi K, Himeno M, Sato M, Yamagiwa H, Kimura T, Yasui N, Ochi T, Endo N, Kitamura Y, Kishimoto T, Komori T (1999) Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn 214:279–290PubMedCrossRefGoogle Scholar
  16. 16.
    Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP, Vortkamp A (2001) BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 128:4523–4534PubMedGoogle Scholar
  17. 17.
    Minina E, Kreschel C, Naski MC, Ornitz DM, Vortkamp A (2002) Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 3:439–449PubMedCrossRefGoogle Scholar
  18. 18.
    Wuelling M, Vortkamp A (2010) Transcriptional networks controlling chondrocyte proliferation and differentiation during endochondral ossification. Pediatr Nephrol 25:625–631PubMedCrossRefGoogle Scholar
  19. 19.
    Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16:2813–2828PubMedCrossRefGoogle Scholar
  20. 20.
    Fujita T, Azuma Y, Fukuyama R, Hattori Y, Yoshida C, Koida M, Ogita K, Komori T (2004) Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J Cell Biol 166:85–95PubMedCrossRefGoogle Scholar
  21. 21.
    Yoshida CA, Yamamoto H, Fujita T, Furuichi T, Ito K, Inoue K, Yamana K, Zanma A, Takada K, Ito Y, Komori T (2004) Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev 18:952–963PubMedCrossRefGoogle Scholar
  22. 22.
    Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289:1501–1504PubMedCrossRefGoogle Scholar
  23. 23.
    Arnold MA, Kim Y, Czubryt MP, Phan D, McAnally J, Qi X, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN (2007) MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell 12:377–389PubMedCrossRefGoogle Scholar
  24. 24.
    Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E, McAnally J, Pomajzl C, Shelton JM, Richardson JA, Karsenty G, Olson EN (2004) Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119:555–566PubMedCrossRefGoogle Scholar
  25. 25.
    Himeno M, Enomoto H, Liu W, Ishizeki K, Nomura S, Kitamura Y, Komori T (2002) Impaired vascular invasion of Cbfa1-deficient cartilage engrafted in the spleen. J Bone Miner Res 17:1297–1305PubMedCrossRefGoogle Scholar
  26. 26.
    St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13:2072–2086PubMedCrossRefGoogle Scholar
  27. 27.
    Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VLJ, Kronenberg HM, Mulligan RC (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 8:277–289PubMedCrossRefGoogle Scholar
  28. 28.
    Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE (1996) Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci USA 93:10240–10245PubMedCrossRefGoogle Scholar
  29. 29.
    Toribio RE, Brown HA, Novince CM, Marlow B, Hernon K, Lanigan LG, Hildreth BE 3rd, Werbeck JL, Shu ST, Lorch G, Carlton M, Foley J, Boyaka P, McCauley LK, Rosol TJ (2010) The midregion, nuclear localization sequence, and C terminus of PTHrP regulate skeletal development, hematopoiesis, and survival in mice. FASEB J 24:1947–1957PubMedCrossRefGoogle Scholar
  30. 30.
    Gafni RI, Baron J (2007) Childhood bone mass acquisition and peak bone mass may not be important determinants of bone mass in late adulthood. Pediatrics 119(Suppl 2):S131–S136PubMedCrossRefGoogle Scholar
  31. 31.
    Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C (2000) Peak bone mass. Osteoporos Int 11:985–1009PubMedCrossRefGoogle Scholar
  32. 32.
    Goldberg G (2006) Nutrition and bone. Women Health Med 3:157–159CrossRefGoogle Scholar
  33. 33.
    Itakura C, Yamasaki K, Goto M, Takahashi M (1978) Pathology of experimental vitamin D deficiency rickets in growing chickens. I. Bone. Avian Pathol 7:491–513PubMedCrossRefGoogle Scholar
  34. 34.
    Wolbach SB (1947) Vitamin-A deficiency and excess in relation to skeletal growth. J Bone Joint Surg Am 29:171–192PubMedGoogle Scholar
  35. 35.
    Miller SC, Miller MA, Omura TH (1988) Dietary lactose improves endochondral growth and bone development and mineralization in rats fed a vitamin D-deficient diet. J Nutr 118:72–77PubMedGoogle Scholar
  36. 36.
    Prentice A, Schoenmakers I, Laskey MA, de Bono S, Ginty F, Goldberg GR (2006) Nutrition and bone growth and development. Proc Nutr Soc 65:348–360PubMedCrossRefGoogle Scholar
  37. 37.
    St-Arnaud R, Naja RP (2011) Vitamin D metabolism, cartilage and bone fracture repair. Mol Cell Endocrinol 347:48–54PubMedCrossRefGoogle Scholar
  38. 38.
    Christakos S (2012) Mechanism of action of 1,25-dihydroxyvitamin D3 on intestinal calcium absorption. Rev Endocr Metab Disord 13:39–44Google Scholar
  39. 39.
    Berry JL, Davies M, Mee AP (2002) Vitamin D metabolism, rickets, and osteomalacia. Semin Musculoskelet Radiol 6:173–181PubMedCrossRefGoogle Scholar
  40. 40.
    Tiosano D, Hochberg Z (2009) Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab 27:392–401PubMedCrossRefGoogle Scholar
  41. 41.
    Mughal MZ (2011) Rickets. Curr Osteoporos Rep 9:291–299PubMedCrossRefGoogle Scholar
  42. 42.
    Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, Demay MB (1999) Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 140:4982–4987PubMedCrossRefGoogle Scholar
  43. 43.
    Ben-Bassat S, Genina O, Lavelin I, Leach RM, Pines M (1999) Parathyroid receptor gene expression by epiphyseal growth plates in rickets and tibial dyschondroplasia. Mol Cell Endocrinol 149:185–195PubMedCrossRefGoogle Scholar
  44. 44.
    Naja RP, Dardenne O, Arabian A, St Arnaud R (2009) Chondrocyte-specific modulation of Cyp27b1 expression supports a role for local synthesis of 1,25-dihydroxyvitamin D3 in growth plate development. Endocrinology 150:4024–4032PubMedCrossRefGoogle Scholar
  45. 45.
    Yoshida E, Noshiro M, Kawamoto T, Tsutsumi S, Kuruta Y, Kato Y (2001) Direct inhibition of Indian hedgehog expression by parathyroid hormone (PTH)/PTH-related peptide and up-regulation by retinoic acid in growth plate chondrocyte cultures. Exp Cell Res 265:64–72PubMedCrossRefGoogle Scholar
  46. 46.
    Kirimoto A, Takagi Y, Ohya K, Shimokawa H (2005) Effects of retinoic acid on the differentiation of chondrogenic progenitor cells, ATDC5. J Med Dent Sci 52:153–162PubMedGoogle Scholar
  47. 47.
    Price PA, Williamson MK, Haba T, Dell RB, Jee WSS (1982) Excessive mineralization with growth plate closure in rats on chronic warfarin treatment. Proc Natl Acad Sci USA 79:7734–7738PubMedCrossRefGoogle Scholar
  48. 48.
    Feteih R, Tassinari MS, Lian JB (1990) Effect of sodium warfarin on vitamin K-dependent proteins and skeletal development in the rat fetus. J Bone Miner Res 5:885–894PubMedCrossRefGoogle Scholar
  49. 49.
    Pullig O, Weseloh G, Ronneberger D, Käkönen S, Swoboda B (2000) Chondrocyte differentiation in human osteoarthritis: expression of osteocalcin in normal and osteoarthritic cartilage and bone. Calcif Tissue Int 67:230–240PubMedCrossRefGoogle Scholar
  50. 50.
    Gerstenfeld LC, Shapiro FD (1996) Expression of bone-specific genes by hypertrophic chondrocytes: implication of the complex functions of the hypertrophic chondrocyte during endochondral bone development. J Cell Biochem 62:1–9PubMedCrossRefGoogle Scholar
  51. 51.
    Munroe PB, Olgunturk RO, Fryns JP, Van Maldergem L, Ziereisen F, Yuksel B, Gardiner RM, Chung E (1999) Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome. Nat Genet 21:142–144PubMedCrossRefGoogle Scholar
  52. 52.
    Bowman BM, Miller SC (2001) Skeletal adaptations during mammalian reproduction. J Musculoskelet Neuronal Interact 1:347–355PubMedGoogle Scholar
  53. 53.
    Dengler-Crish CM, Catania KC (2009) Cessation of reproduction-related spine elongation after multiple breeding cycles in female naked mole-rats. Anat Rec (Hoboken) 292:131–137CrossRefGoogle Scholar
  54. 54.
    Suntornsaratoon P, Wongdee K, Goswami S, Krishnamra N, Charoenphandhu N (2010) Bone modeling in bromocriptine-treated pregnant and lactating rats: possible osteoregulatory role of prolactin in lactation. Am J Physiol Endocrinol Metab 299:E426–E436PubMedCrossRefGoogle Scholar
  55. 55.
    Suntornsaratoon P, Wongdee K, Krishnamra N, Charoenphandhu N (2010) Possible chondroregulatory role of prolactin on the tibial growth plate of lactating rats. Histochem Cell Biol 134:483–491PubMedCrossRefGoogle Scholar
  56. 56.
    Suntornsaratoon P, Wongdee K, Krishnamra N, Charoenphandhu N (2010) Femoral bone mineral density and bone mineral content in bromocriptine-treated pregnant and lactating rats. J Physiol Sci 60:1–8PubMedCrossRefGoogle Scholar
  57. 57.
    Henry EC, Dengler-Crish CM, Catania KC (2007) Growing out of a caste—reproduction and the making of the queen mole-rat. J Exp Biol 210:261–268PubMedCrossRefGoogle Scholar
  58. 58.
    Redd EH, Miller SC, Jee WSS (1984) Changes in endochondral bone elongation rates during pregnancy and lactation in rats. Calcif Tissue Int 36:697–701PubMedCrossRefGoogle Scholar
  59. 59.
    Nakkrasae LI, Thongon N, Thongbunchoo J, Krishnamra N, Charoenphandhu N (2010) Transepithelial calcium transport in prolactin-exposed intestine-like Caco-2 monolayer after combinatorial knockdown of TRPV5, TRPV6 and Cav1.3. J Physiol Sci 60:9–17PubMedCrossRefGoogle Scholar
  60. 60.
    Badawi M, Van Exter C, Delogne-Desnoeck J, Van Meenen F, Robyn C (1978) Cord serum prolactin in relation to the time of the day, the sex of the neonate and the birth weight. Acta Endocrinol (Copenh) 87:241–247Google Scholar
  61. 61.
    Hwang P, Guyda H, Friesen H (1971) A radioimmunoassay for human prolactin. Proc Natl Acad Sci USA 68:1902–1906PubMedCrossRefGoogle Scholar
  62. 62.
    Smith YF, Mullon DK, Hamosh M, Scanlon JW, Hamosh P (1979) Serum prolactin and respiratory distress syndrome in the newborn. Pediatr Res 14:93–95CrossRefGoogle Scholar
  63. 63.
    Whitworth NS, Grosvenor CE (1978) Transfer of milk prolactin to the plasma of neonatal rats by intestinal absorption. J Endocrinol 79:191–199PubMedCrossRefGoogle Scholar
  64. 64.
    Romero-Prado M, Blázquez C, Rodríguez-Navas C, Muñoz J, Guerrero I, Delgado-Baeza E, García-Ruiz JP (2006) Functional characterization of human mesenchymal stem cells that maintain osteochondral fates. J Cell Biochem 98:1457–1470PubMedCrossRefGoogle Scholar
  65. 65.
    Berger C, Goltzman D, Langsetmo L, Joseph L, Jackson S, Kreiger N, Tenenhouse A, Davison KS, Josse RG, Prior JC, Hanley DA, CaMos Research Group (2010) Peak bone mass from longitudinal data: implications for the prevalence, pathophysiology, and diagnosis of osteoporosis. J Bone Miner Res 25:1948–1957PubMedCrossRefGoogle Scholar
  66. 66.
    Johnston CC, Miller JZ, Slemenda CW, Reister TK, Hui S, Christian JC, Peacock M (1992) Calcium supplementation and increases in bone mineral density in children. N Engl J Med 327:82–87PubMedCrossRefGoogle Scholar
  67. 67.
    Pirilä S, Taskinen M, Viljakainen H, Kajosaari M, Turanlahti M, Saarinen-Pihkala UM, Mäkitie O (2011) Infant milk feeding influences adult bone health: a prospective study from birth to 32 years. PLoS ONE 6:e19068. doi:10.1371/journal.pone.0019068 PubMedCrossRefGoogle Scholar
  68. 68.
    Nagai H, Tsukuda R, Yamasaki H, Mayahara H (1999) Systemic injection of FGF-2 stimulates endocortical bone modelling in SAMP6, a murine model of low turnover osteopenia. J Vet Med Sci 61:869–875PubMedCrossRefGoogle Scholar
  69. 69.
    Rickard DJ, Iwaniec UT, Evans G, Hefferan TE, Hunter JC, Waters KM, Lydon JP, O’Malley BW, Khosla S, Spelsberg TC, Turner RT (2008) Bone growth and turnover in progesterone receptor knockout mice. Endocrinology 149:2383–2390PubMedCrossRefGoogle Scholar
  70. 70.
    Coffin JD, Florkiewicz RZ, Neumann J, Mort-Hopkins T, Dorn GW 2nd, Lightfoot P, German R, Howles PN, Kier A, O’Toole BA, Sasse J, Gonzalez AM, Baird A, Doetschman T (1995) Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice. Mol Biol Cell 6:1861–1873PubMedGoogle Scholar
  71. 71.
    Montero A, Okada Y, Tomita M, Ito M, Tsurukami H, Nakamura T, Doetschman T, Coffin JD, Hurley MM (2000) Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest 105:1085–1093PubMedCrossRefGoogle Scholar
  72. 72.
    Mayahara H, Ito T, Nagai H, Miyajima H, Tsukuda R, Taketomi S, Mizoguchi J, Kato K (1993) In vivo stimulation of endosteal bone formation by basic fibroblast growth factor in rats. Growth Factors 9:73–80PubMedCrossRefGoogle Scholar
  73. 73.
    Yao W, Dai W, Shahnazari M, Pham A, Chen Z, Chen H, Guan M, Lane NE (2010) Inhibition of the progesterone nuclear receptor during the bone linear growth phase increases peak bone mass in female mice. PLoS ONE 5:e11410. doi:10.1371/journal.pone.0011410 PubMedCrossRefGoogle Scholar
  74. 74.
    Cooper C, Cawley M, Bhalla A, Egger P, Ring F, Morton L, Barker D (1995) Childhood growth, physical activity, and peak bone mass in women. J Bone Miner Res 10:940–947PubMedCrossRefGoogle Scholar
  75. 75.
    Bauer DC, Browner WS, Cauley JA, Orwoll ES, Scott JC, Black DM, Tao JL, Cummings SR (1993) Factors associated with appendicular bone mass in older women. Ann Intern Med 118:657–665PubMedGoogle Scholar
  76. 76.
    Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, Carlson J, Seeman E (1998) Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res 13:1814–1821PubMedCrossRefGoogle Scholar
  77. 77.
    Vainionpää A, Korpelainen R, Leppäluoto J, Jämsä T (2005) Effects of high-impact exercise on bone mineral density: a randomized controlled trial in premenopausal women. Osteoporos Int 16:191–197PubMedCrossRefGoogle Scholar
  78. 78.
    Welten DC, Kemper HC, Post GB, van Mechelen W, Twisk J, Lips P, Teule GJ (1994) Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake. J Bone Miner Res 9:1089–1096PubMedCrossRefGoogle Scholar
  79. 79.
    Taaffe DR, Snow-Harter C, Connolly DA, Robinson TL, Brown MD, Marcus R (1995) Differential effects of swimming versus weight-bearing activity on bone mineral status of eumenorrheic athletes. J Bone Miner Res 10:586–593PubMedCrossRefGoogle Scholar
  80. 80.
    Swissa-Sivan A, Simkin A, Leichter I, Nyska A, Nyska M, Statter M, Bivas A, Menczel J, Samueloff S (1989) Effect of swimming on bone growth and development in young rats. Bone Miner 7:91–105PubMedCrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer 2012

Authors and Affiliations

  • Kannikar Wongdee
    • 1
    • 2
  • Nateetip Krishnamra
    • 1
    • 3
  • Narattaphol Charoenphandhu
    • 1
    • 3
  1. 1.Center of Calcium and Bone Research (COCAB), Faculty of ScienceMahidol UniversityBangkokThailand
  2. 2.Office of Academic Management, Faculty of Allied Health SciencesBurapha UniversityChonburiThailand
  3. 3.Department of Physiology, Faculty of ScienceMahidol UniversityBangkokThailand

Personalised recommendations