The Journal of Physiological Sciences

, Volume 62, Issue 3, pp 221–231 | Cite as

Evaluation of left ventricular mechanical work and energetics of normal hearts in SERCA2a transgenic rats

  • Guo-Xing Zhang
  • Koji Obata
  • Daisuke Takeshita
  • Shinichi Mitsuyama
  • Tamiji Nakashima
  • Akio Kikuta
  • Masumi Hirabayashi
  • Koichi Tomita
  • Roland Vetter
  • Wolfgang H. Dillmann
  • Miyako Takaki
Original Paper


Cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a) is responsible for most of the Ca2+ removal during diastole and a larger Ca2+ handling energy consumer in excitation–contraction (E–C) coupling. To understand the cardiac performance under long-term SERCA2a overexpression conditions, we established SERCA2a transgenic (TG) Wistar rats to analyze cardiac mechanical work and energetics in normal hearts during pacing at 300 beats/min. SERCA2a protein expression was increased in TGI and TGII rats (F2 and F3 of the same father and different mothers). Mean left ventricular (LV) end-systolic pressure (ESP) and systolic pressure–volume area (PVA; a total mechanical energy per beat) at midrange LV volume (mLVV) were significantly larger in TGI rats and were unchanged in TGII rats, compared to those in non-TG [wildtype (WT)] littermates. Mean myocardial oxygen consumption per minute for E–C coupling was significantly increased, and the mean slope of myocardial oxygen consumption per beat (VO2)–PVA (systolic PVA) linear relation was smaller, but the overall O2 cost of LV contractility for Ca2+ is unchanged in all TG rats. Mean Ca2+ concentration exerting maximal ESPmLVV in TGII rats was significantly higher than that in WT rats. The Ca2+ overloading protocol did not elicit mitochondrial swelling in TGII rats. Tolerance to higher Ca2+ concentrations may support the possibility for enhanced SERCA2a activity in TGII rats. In conclusion, long-term SERCA2a overexpression enhanced or maintained LV mechanics, improved contractile efficiency under higher energy expenditure for Ca2+ handling, and improved Ca2+ tolerance, but it did not change the overall O2 cost of LV contractility for Ca2+ in normal hearts of TG rats.


Pressure–volume area SERCA2a Transgenic rat 


  1. 1.
    Gwathmey JK, Copelas L, MacKinnon R, Schoen FJ, Feldman MD, Grossman W, Morgan JP (1987) Abnormal intracellular Ca2+ handling in myocardium from patients with end-stage heart failure. Circ Res 61:70–76PubMedGoogle Scholar
  2. 2.
    Hasenfuss G, Mulieri LA, Leavitt BJ, Allen PD, Haeberle JR, Alpert NR (1992) Alteration of contractile function and excitation–contraction coupling in dilated cardiomyopathy. Circ Res 70:1225–1232PubMedGoogle Scholar
  3. 3.
    Hasenfuss G (1998) Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res 39:60–76PubMedCrossRefGoogle Scholar
  4. 4.
    Hasenfuss G, Pieske B (2002) Calcium-cycling in congestive heart failure. J Mol Cell Cardiol 34:951–969PubMedCrossRefGoogle Scholar
  5. 5.
    Pieske B, Kretschmann B, Meyer M, Holubarsch C, Weirich J, Posival H, Minami K, Just H, Hasenfuss G (1995) Alterations in intracellular calcium handling associated with the inverse force–frequency relation in human dilated cardiomyopathy. Circulation 92:1169–1178PubMedGoogle Scholar
  6. 6.
    Beuckelmann DL, Näbauer M, Erdmann E (1992) Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85:1046–1055PubMedGoogle Scholar
  7. 7.
    Lindner M, Erdmann E, Beuckelmann DJ (1998) Calcium-content of SR in isolated ventricular myocytes from patients with terminal heart failure. J Mol Cell Cardiol 30:743–749PubMedCrossRefGoogle Scholar
  8. 8.
    Pieske B, Maier LS, Bers DM, Hasenfuss G (1999) Ca2+-handling and SR Ca2+-content in isolated failing and nonfailing human myocardium. Circ Res 85:38–46PubMedGoogle Scholar
  9. 9.
    Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H (1994) Relation between myocardial function and expression of SR Ca2+-ATPase in failing and nonfailing human myocardium. Circ Res 75:434–442PubMedGoogle Scholar
  10. 10.
    Baker DL, Hashimoto K, Grupp IL, Ji Y, Reed T, Loukianov E, Grupp G, Bhagwhat A, Hoit B, Walsh R, Marban E, Periasamy M (1998) Targeted overexpression of the SR Ca2+-ATPase increases cardiac contractility in transgenic mouse hearts. Circ Res 83:1205–1214PubMedGoogle Scholar
  11. 11.
    He H, Giordano FJ, Hilal-Dandan R, Choi DJ, Rockman HA, McDonough PM, Bluhm WF, Meyer M, Sayen MR, Swanson E, Dillmann WH (1997) Overexpression of the rat sarcoplasmic reticulum Ca2+ ATPase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation. J Clin Invest 100:380–389PubMedCrossRefGoogle Scholar
  12. 12.
    Giordano FJ, He H, McDounough P, Meyer M, Sayen MR, Dillmann WH (1997) Adenovirus-mediated gene transfer reconstitutes depressed SR Ca2+-ATPase levels and shortens prolonged cardiac myocyte Ca2+-transient. Circulation 96:400–403PubMedGoogle Scholar
  13. 13.
    del Monte F, Williams E, Lebeche D, Schmidt U, Rosenzweig A, Gwathmey JK, Lewandowski ED, Hajjar RJ (2001) Improvement in survival and cardiac metabolism after gene transfer of SR Ca2+-ATPase in a rat model of heart failure. Circulation 104:1424–1429PubMedCrossRefGoogle Scholar
  14. 14.
    Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, Guerrero JL, Gwathmey JK, Rosenzweig A, Hajjar RJ (2000) Adenoviral gene transfer of SERCA2a improves left ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA 97:793–798PubMedCrossRefGoogle Scholar
  15. 15.
    Schmidt U, del Monte F, Miyamoto MI, Matsui T, Gwathmey JK, Rosenzweig A, Hajjar RJ (2000) Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of SR Ca2+-ATPase. Circulation 101:790–796PubMedGoogle Scholar
  16. 16.
    Maier LS, Wahl-Schott C, Horn W, Weichert S, Pagel C, Wagner S, Dybkova N, Müller OJ, Näbauer M, Franz W-M (2005) Increased SR Ca2+ cycling contributes to improved contractile performance in SERCA2a-overexpressing transgenic rats. Cardiovasc Res 67:636–646PubMedCrossRefGoogle Scholar
  17. 17.
    Müller OJ, Lange M, Rattunde H, Lorenzen H-P, Müller M, Frey N, Bittner C, Simonides W, Katus HA, Franz W-M (2003) Transgenic rat hearts overexpressing SERCA2a show improved contractility under baseline conditions and pressure overload. Cardiovasc Res 59:380–389PubMedCrossRefGoogle Scholar
  18. 18.
    Teucher N, Prestle J, Seidler T, Currie S, Elliott EB, Reynolds DF, Schott P, Wagner S, Kogler H, Inesi G, Bers DM, Hasenfuss G, Smith GL (2004) Excessive sarcoplasmic/endoplasmic reticulum Ca2+-ATPase expression causes increased sarcoplasmic reticulum Ca2+ uptake but decreases myocyte shortening. Circulation 110:3533–3559CrossRefGoogle Scholar
  19. 19.
    Vetter R, Rehfeld U, Reissfelder C, Weiß W, Wagner K-D, Günther J, Hammes A, Tschöpe C, Dillmann W, Paul M (2002) Transgenic overexpression of the sarcoplasmic reticulum Ca2+ ATPase improves reticular Ca2+ handling in normal and diabetic rat hearts. FASEB J 16:1657–1659PubMedGoogle Scholar
  20. 20.
    Hata Y, Sakamoto T, Hosogi S, Ohe T, Suga H, Takaki M (1998) Linear O2 use–pressure–volume area relation from curved end-systolic pressure–volume relation of the blood-perfused rat left ventricle. Jpn J Physiol 48:197–204PubMedCrossRefGoogle Scholar
  21. 21.
    Hata Y, Sakamoto T, Hosogi S, Ohe T, Suga H, Takaki M (1998) Effects of thapsigargin and KCl on the O2 use of the excised blood perfused rat heart. J Mol Cell Cardiol 30:2137–2144PubMedCrossRefGoogle Scholar
  22. 22.
    Tsuji T, Ohga Y, Yoshikawa Y, Sakata S, Abe T, Tabayashi N, Kobayashi S, Kitamura S, Taniguchi S, Suga H, Takaki M (2001) Rat cardiac contractile dysfunction induced by Ca2+ overload: possible link to the proteolysis of fodrin. Am J Physiol Heart Circ Physiol 281:H1286–H1294PubMedGoogle Scholar
  23. 23.
    Tsuji T, Ohga Y, Yoshikawa Y, Sakata S, Kohzuki H, Misawa H, Abe T, Tabayashi N, Kobayashi S, Kitamura S, Taniguchi S, Suga H, Takaki M (1999) New index for oxygen cost of contractility from curved end-systolic pressure–volume relations in cross-circulated rat hearts. Jpn J Physiol 49:513–520PubMedCrossRefGoogle Scholar
  24. 24.
    Yoshikawa Y, Hagihara H, Ohga Y, Nakajima-Takenaka C, Murata K, Taniguchi S, Takaki M (2005) Calpain inhibitor-1 protects the rat heart from ischemic–reperfusion injury: analysis by mechanical work and energetics. Am J Physiol Heart Circ Physiol 288:H1690–H1698PubMedCrossRefGoogle Scholar
  25. 25.
    Yoshikawa Y, Zhang G-X, Obata K, Ohga Y, Matsuyoshi H, Taniguchi S, Takaki M (2010) Cardioprotective effects of a novel calpain inhibitor SNJ-1945 for reperfusion injury after cardioplegic cardiac arrest. Am J Physiol Heart Circ Physiol 298:H643–H651PubMedCrossRefGoogle Scholar
  26. 26.
    Abe T, Ohga Y, Tabayashi N, Kobayashi S, Sakata S, Misawa H, Tsuji T, Kohzuki H, Suga H, Taniguchi S, Takaki M (2002) Left ventricular diastolic dysfunction in type 2 diabetes mellitus model rats. Am J Physiol Heart Circ Physiol 282:H138–H148PubMedGoogle Scholar
  27. 27.
    Lee S, Ohga Y, Tachibana H, Syuu Y, Ito H, Harada M, Suga H, Takaki M (1998) Effects of myosin isozyme shift on curvilinearity of the left ventricular end-systolic pressure–volume relation of in situ rat hearts. Jpn J Physiol 48:445–455PubMedCrossRefGoogle Scholar
  28. 28.
    Tachibana H, Takaki M, Lee S, Ito H, Yamaguchi H, Suga H (1997) New mechanoenergetic evaluation of left ventricular contractility in in situ rat hears. Am J Physiol Heart Circ Physiol 272:H2671–H2678Google Scholar
  29. 29.
    Takaki M, Kohzuki H, Kawatani Y, Yoshida A, Ishidate H, Suga H (1998) Sarcoplasmic reticulum Ca2+ pump blockade decreases O2 use of unloaded contracting rat heart slices: thapsigargin and cyclopiazonic acid. J Mol Cell Cardiol 30:649–659PubMedCrossRefGoogle Scholar
  30. 30.
    Ohga Y, Sakata S, Takenaka C, Abe T, Tsuji T, Taniguchi S, Takaki M (2002) Cardiac dysfunction in terms of left ventricular mechanical work and energetics in hypothyroid rats. Am J Physiol Heart Circ Physiol 283:H631–H641PubMedGoogle Scholar
  31. 31.
    Takaki M (2004) Left ventricular mechanoenergetics in small animals. Jpn J Physiol 54:175–207PubMedCrossRefGoogle Scholar
  32. 32.
    Sakata S, Ohga Y, Abe T, Tabayashi N, Kobayashi S, Tsuji T, Kohzuki H, Misawa H, Taniguchi S, Takaki M (2001) No dependency of a new index for oxygen cost of left ventricular contractility on heart rates in the blood-perfused excised rat heart. Jpn J Physiol 51:177–185PubMedCrossRefGoogle Scholar
  33. 33.
    Tabayashi N, Abe T, Kobayashi S, Yoshikawa Y, Sakata S, Takenaka C, Misawa H, Taniguchi S, Takaki M (2002) Oxygen costs of left ventricular contractility for dobutamine and Ca2+ in normal rat hearts and the cost for dobutamine in Ca2+ overload-induced failing hearts. Jpn J Physiol 52:163–171PubMedCrossRefGoogle Scholar
  34. 34.
    Matsubara H, Takaki M, Yasuhara S, Araki J, Suga H (1995) Logistic time constant of isovolumic relaxation pressure–time curve in the canine left ventricle: better alternative to exponential time constant. Circulation 92:2318–2326PubMedGoogle Scholar
  35. 35.
    Bers DM (2000) Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res 87:275–281PubMedGoogle Scholar
  36. 36.
    Bers DM (2001) Excitation–contraction coupling and cardiac contractile force, 2nd edn. Kluwer, DordrechtCrossRefGoogle Scholar
  37. 37.
    Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205PubMedCrossRefGoogle Scholar
  38. 38.
    Bers DM (2002) Cardiac Na/Ca exchange function in rabbit, mouse and man: what’s the difference? J Mol Cell Cardiol 34:369–373PubMedCrossRefGoogle Scholar
  39. 39.
    Vetter R, Rehfeld U, Reissfelder R, Fechner H, Seppet E, Kreutz R (2010) Decreased cardiac SERCA2 expression, SR Ca uptake, and contractile function in hypothyroidism are attenuated in SERCA2 overexpressing transgenic rats. Am J Physiol Heart Circ Physiol 300:H943–H950CrossRefGoogle Scholar
  40. 40.
    Nakajima-Takenaka C, Zhang GX, Obata K, Tohne K, Matsuyoshi H, Nagai Y, Nishiyama A, Takaki M (2009) Left ventricular function of isoproterenol-induced hypertrophied rat hearts perfused with blood: mechanical work and energetics. Am J Physiol Heart Circ Physiol 297:H1736–H1743PubMedCrossRefGoogle Scholar
  41. 41.
    Hajjar RJ, Kang JX, Gwathmey JK, Rosenzweig A (1997) Physiological effects of adenoviral gene transfer of sarcoplasmic reticulum calcium ATPase in isolated rat myocytes. Circulation 95:423–429PubMedGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer 2012

Authors and Affiliations

  • Guo-Xing Zhang
    • 1
    • 2
  • Koji Obata
    • 1
  • Daisuke Takeshita
    • 1
  • Shinichi Mitsuyama
    • 1
  • Tamiji Nakashima
    • 3
  • Akio Kikuta
    • 3
  • Masumi Hirabayashi
    • 4
  • Koichi Tomita
    • 4
  • Roland Vetter
    • 5
  • Wolfgang H. Dillmann
    • 6
  • Miyako Takaki
    • 1
  1. 1.Department of Physiology IINara Medical University School of MedicineKashiharaJapan
  2. 2.Department of PhysiologyMedical College of Soochow UniversitySuzhouPeople’s Republic of China
  3. 3.Department of Anatomy, School of MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
  4. 4.National Institute for Physiological SciencesOkazakiJapan
  5. 5.Institut für Klinische Pharmakologie und ToxikologieCharité-Universitätsmedizin BerlinBerlinGermany
  6. 6.Department of MedicineUniversity of California, San DiegoLa JollaUSA

Personalised recommendations