The Journal of Physiological Sciences

, Volume 61, Issue 5, pp 363–372 | Cite as

Protective effect of oxymatrine on chronic rat heart failure

  • Shu-Ting Hu
  • Ying Tang
  • Ya-Feng Shen
  • Hai-Hang Ao
  • Jie Bai
  • Yong-Liang Wang
  • Yong-Ji YangEmail author
Original Paper


Oxymatrine is one of the alkaloids extracted from the Chinese herb Sophora japonica (Sophora flavescens Ait.) with anti-inflammatory, immune reaction inhibiting, antiviral, and hepatocyte and antihepatic fibrosis protective activities. However, the effect of oxymatrine on heart failure is not yet known. In this study, the effect of oxymatrine on heart failure was investigated using a Sprague-Dawley rat model of chronic heart failure. Morphological findings showed that in the group treated with 50 and 100 mg/kg of oxymatrine; intermyofibrillar lysis disappeared, myofilaments were orderly, closely and evenly arranged; and mitochondria contained tightly packed cristae compared with the heart failure group. We investigated the cytosolic Ca2+ transients and sarcoplasmic reticulum (SR) Ca2+ content, and assessed the expression of ryanodine receptor (RyR2), SR-Ca2+ ATPase (SERCA2a), and L-type Ca2+ channel (dihydropyridine receptor, DHPR). We found that the cytosolic Ca2+ transients were markedly increased in amplitude in the medium- (ΔF/F 0 = 26.22 ± 2.01) and high-dose groups (ΔF/F 0 = 29.49 ± 1.17) compared to the heart failure group (ΔF/F 0 = 12.12 ± 1.35, P < 0.01), with changes paralleled by a significant increase in the SR Ca2+ content (medium-dose group: ΔF/F 0 = 32.20 ± 1.67, high-dose group: ΔF/F 0 = 32.57 ± 1.29, HF: ΔF/F 0 = 17.26 ± 1.05, P < 0.01). Moreover, we demonstrated that the expression of SERCA2a and cardiac DHPR was significantly increased in the medium- and high-dose group compared with the heart failure rats. These findings suggest that oxymatrine could improve heart failure by improving the cardiac function and that this amelioration is associated with upregulation of SERCA2a and DHPR.


Oxymatrine Heart failure Sarcoplasmic reticulum Ca2+ ATPase L-type Ca2+ channel Dihydropyridine receptor 





Ca2+-induced Ca2+ release


Dihydropyridine receptor

E-C coupling

Excitation-contraction coupling


Heart failure


L-type Ca2+ channel


Na+–Ca2+ exchanger






Ryanodine receptor


Cardiac RyR


SR-Ca2+ ATPase


Sarcoplasmic reticulum



This work was supported by The National Natural Sciences Fund Project of China (NSFC) and, in part, by the National Program on Key Basic Research Projects (the 973 Program Project). We thank Dr. Jianfei Wang for her technical assistance, and Shan Xu and Xiaoyan Fan for providing valuable suggestions.


  1. 1.
    McKenzie DB, Cowley AJ (2003) Drug therapy in chronic heart failure. Postgrad Med J 79:634–642PubMedCrossRefGoogle Scholar
  2. 2.
    Bers DM, Eisner DA, Valdivia HH (2003) Sarcoplasmic reticulum Ca2+ and heart failure: roles of diastolic leak and Ca2+ transport. Circ Res 93:487–490PubMedCrossRefGoogle Scholar
  3. 3.
    Piacentino V 3rd, Weber CR, Chen X, Weisser-Thomas J, Margulies KB, Bers DM, Houser SR (2003) Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ Res 92:651–658PubMedCrossRefGoogle Scholar
  4. 4.
    Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–376PubMedCrossRefGoogle Scholar
  5. 5.
    Pogwizd SM, Bers DM (2002) Na+/Ca2+ exchange in heart failure: contractile dysfunction and arrhythmogenesis. Ann NY Acad Sci 976:454–465PubMedCrossRefGoogle Scholar
  6. 6.
    Houser SR, Margulies KB (2003) Is depressed myocyte contractility centrally involved in heart failure? Circ Res 92:350–358PubMedCrossRefGoogle Scholar
  7. 7.
    Liu M, Liu XY, Cheng JF (2003) Advance in the pharmacological research on matrine. Zhongguo Zhong Yao Za Zhi 28:801–804PubMedGoogle Scholar
  8. 8.
    Ma L, Wen S, Zhan Y, He Y, Liu X, Jiang J (2008) Anticancer effects of the Chinese medicine matrine on murine hepatocellular carcinoma cells. Planta Med 74:245–251PubMedCrossRefGoogle Scholar
  9. 9.
    Liu SX, Chiou GC (1996) Effects of Chinese herbal products on mammalian retinal functions. J Ocul Pharmacol Ther 12:377–386PubMedCrossRefGoogle Scholar
  10. 10.
    Jiang H, Hou C, Zhang S, Xie H, Zhou W, Jin Q, Cheng X, Qian R, Zhang X (2007) Matrine upregulates the cell cycle protein E2F-1 and triggers apoptosis via the mitochondrial pathway in K562 cells. Eur J Pharmacol 559:98–108PubMedCrossRefGoogle Scholar
  11. 11.
    Azzam HS, Goertz C, Fritts M, Jonas WB (2007) Natural products and chronic hepatitis C virus. Liver Int 27:17–25PubMedCrossRefGoogle Scholar
  12. 12.
    Yamazaki M (2000) The pharmacological studies on matrine and oxymatrine. Yakugaku Zasshi 120:1025–1033PubMedGoogle Scholar
  13. 13.
    Zhang MJ, Huang J (2004) Recent research progress of anti-tumor mechanism matrine. Zhongguo Zhong Yao Za Zhi 29:115–118PubMedGoogle Scholar
  14. 14.
    Jiang H, Meng F, Li J, Sun X (2005) Anti-apoptosis effects of oxymatrine protect the liver from warm ischemia reperfusion injury in rats. World J Surg 29:1397–1401PubMedCrossRefGoogle Scholar
  15. 15.
    Zhao J, Yu S, Tong L, Zhang F, Jiang X, Pan S, Jiang H, Sun X (2008) Oxymatrine attenuates intestinal ischemia/reperfusion injury in rats. Surg Today 38:931–937PubMedCrossRefGoogle Scholar
  16. 16.
    Tanonaka K, Furuhama KI, Yoshida H, Kakuta K, Miyamoto Y, Toga W, Takeo S (2001) Protective effect of heat shock protein 72 on contractile function in the perfused failing heart. Am J Physiol Heart Circ Physiol 281:H215–H222PubMedGoogle Scholar
  17. 17.
    van Rooij E, Doevendans PA, Crijns HJ, Heeneman S, Lips DJ, van Bilsen M, Williams RS, Olson EN, Bassel-Duby R, Rothermel BA, De Windt LJ (2004) MCIP1 overexpression suppresses left ventricular remodeling and sustains cardiac function after myocardial infarction. Circ Res 94:e18–e26PubMedCrossRefGoogle Scholar
  18. 18.
    Ohmoto-Sekine Y, Uemura H, Tamagawa M, Nakaya H (1999) Inhibitory effects of aprindine on the delayed rectifier K+ current and the muscarinic acetylcholine receptor-operated K+ current in guinea-pig atrial cells. Br J Pharmacol 126:751–761PubMedCrossRefGoogle Scholar
  19. 19.
    Nakaya H, Tohse N, Takeda Y, Kanno M (1993) Effects of MS-551, a new class antiarrhythmic drug, on action potential and membrane currents in rabbit ventricular myocytes. Br J Pharmacol 109:157–163PubMedGoogle Scholar
  20. 20.
    Song LS, Wang SQ, Xiao RP, Spurgeon H, Edward GL, Cheng HP (2001) Beta-Adrenergic stimulation synchronizes intracellular Ca2+ release during excitation-contraction coupling in cardiac myocytes. Circ Res 88:794–801PubMedCrossRefGoogle Scholar
  21. 21.
    Morgan JP, Erny RE, Allen PD, Grossman W, Gwathmey JK (1990) Abnormal intracellular calcium handling, a major cause of systolic and diastolic dysfunction in ventricular myocardium from patients with heart failure. Circulation 81:III21–III32PubMedGoogle Scholar
  22. 22.
    Beuckelmann DJ, Nabauer M, Erdmann E (1992) Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85:1046–1055PubMedGoogle Scholar
  23. 23.
    Hasenfuss G, Schillinger W, Lehnart SE, Preuss M, Pieske B, Maier LS, Prestle J, Minami K, Just H (1999) Relationship between Na+–Ca2+ exchanger protein levels and diastolic function of failing human myocardium. Circulation 99:641–648PubMedGoogle Scholar
  24. 24.
    Pieske B, Sutterlin M, Schmidt-Schweda S, Minami K, Meyer M, Olschewski M, Holubarsch C, Just H, Hasenfuss G (1996) Diminished post-rest potentiation of contractile force in human dilated cardiomyopathy. Functional evidence for alterations in intracellular Ca2+ handling. J Clin Invest 98:764–776PubMedCrossRefGoogle Scholar
  25. 25.
    Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB, McCune SA, Altschuld RA, Lederer WJ (1997) Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276:800–806PubMedCrossRefGoogle Scholar
  26. 26.
    Hobai IA, O’Rourke B (2001) Decreased sarcoplasmic reticulum calcium content is responsible for defective excitation-contraction coupling in canine heart failure. Circulation 103:1577–1584PubMedGoogle Scholar
  27. 27.
    Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H (1994) Relation between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and nonfailing human myocardium. Circ Res 75:434–442PubMedGoogle Scholar
  28. 28.
    Shannon TR, Pogwizd SM, Bers DM (2003) Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes from rabbits in heart failure. Circ Res 93:592–594PubMedCrossRefGoogle Scholar
  29. 29.
    Yamamoto T, Yano M, Kohno M, Hisaoka T, Ono K, Tanigawa T, Saiki Y, Hisamatsu Y, Ohkusa T, Matsuzaki M (1999) Abnormal Ca2+ release from cardiac sarcoplasmic reticulum in tachycardia-induced heart failure. Cardiovasc Res 44:146–155PubMedCrossRefGoogle Scholar
  30. 30.
    Sun HL, Li L, Shang L, Zhao D, Dong DL, Qiao GF, Liu Y, Chu WF, Yang BF (2008) Cardioprotective effects and underlying mechanisms of oxymatrine against ischemic myocardial injuries of rats. Phytother Res 22:985–989CrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer 2011

Authors and Affiliations

  • Shu-Ting Hu
    • 1
  • Ying Tang
    • 2
  • Ya-Feng Shen
    • 2
  • Hai-Hang Ao
    • 3
  • Jie Bai
    • 1
  • Yong-Liang Wang
    • 2
  • Yong-Ji Yang
    • 2
    Email author
  1. 1.Department of PhysiologyBasic Medical Science College, Ningxia Medical UniversityYinchuanPeople’s Republic of China
  2. 2.Department of BiophysicsSecond Military Medical UniversityShanghaiPeople’s Republic of China
  3. 3.Department of EmergencyAffiliated Hospital of Ningxia Medical UniversityYinchuanPeople’s Republic of China

Personalised recommendations