The effect of electroaucpuncture for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced proteomic changes in the mouse striatum

  • Seung-Tae Kim
  • Woongjoon Moon
  • Younbyoung Chae
  • Youn Jung Kim
  • Hyejung Lee
  • Hi-Joon Park
Original Paper

Abstract

Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Parkinson’s disease mouse model, we investigated protein expression changes associated with the action of electroacupuncture (EA) in the mouse striatum. Twelve-week-old male C57BL/6 mice were injected intraperitoneally with 30 mg/kg of MPTP at 24-h intervals for 5 days, and the 100-Hz EA stimulation was performed at GB34 and GB39 once a day for 12 days consecutively from the first injection. With the EA, the MPTP-induced dopaminergic neuronal destruction was reduced. Of the 13 proteins that were differentially expressed between control and MPTP treated mice, cytosolic malate dehydrogenase, munc18-1, and hydroxyacylglutathione hydrolase, which were increased by MPTP, and cytochrome c oxidase subunit Vb, which was decreased by MPTP, were restored to the level of the saline group after EA treatment. These proteins are likely related to cellular metabolism. Altogether, we propose that the EA may exert neuroprotective effects in mice striatum through reducing MPTP-induced toxicity such as oxidative stress.

Keywords

Acupuncture Electroacupuncture Hydroxyacylglutathione hydrolase 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Parkinson’s disease Striatum 

Notes

Acknowledgments

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (R11-2005-014).

References

  1. 1.
    Sian J, Gerlach M, Youdim MB, Riederer P (1999) Parkinson’s disease: a major hypokinetic basal ganglia disorder. J Neural Transm 106:443–476CrossRefPubMedGoogle Scholar
  2. 2.
    Cossette M, Lecomte F, Parent A (2005) Morphology and distribution of dopaminergic neurons intrinsic to the human striatum. J Chem Neuroanat 29:1–11CrossRefPubMedGoogle Scholar
  3. 3.
    Shimohama S, Sawada H, Kitamura Y, Taniguchi T (2003) Disease model: Parkinson’s disease. Trends Mol Med 9:360–365CrossRefPubMedGoogle Scholar
  4. 4.
    von Bohlen Und Halbach O (2005) Modeling neurodegenerative diseases in vivo review. Neurodegener Dis 2:313–320CrossRefPubMedGoogle Scholar
  5. 5.
    Ha JY, Lee SH, Yin CS, Park SM, Kang JW, Chang DI, Lee YH (2003) The effect of manual acupuncture therapy on symptoms of the patients with idiopathic Parkinson’s disease. Korean J Orient Med 24:172–183Google Scholar
  6. 6.
    Zhuang X, Wang L (2000) Acupuncture treatment of Parkinson’s disease—a report of 29 cases. J Tradit Chin Med 20:265–267PubMedGoogle Scholar
  7. 7.
    Shulman LM, Wen X, Weiner WJ, Bateman D, Minagar A, Duncan R, Konefal J (2002) Acupuncture therapy for the symptoms of Parkinson’s disease. Mov Disord 17:799–802CrossRefPubMedGoogle Scholar
  8. 8.
    Kang JM, Park HJ, Choi YG, Choe IH, Park JH, Kim YS, Lim S (2007) Acupuncture inhibits microglial activation and inflammatory events in the MPTP-induced mouse model. Brain Res 1131:211–219CrossRefPubMedGoogle Scholar
  9. 9.
    Jeon S, Kim YJ, Kim ST, Moon W, Chae Y, Kang M, Chung MY, Lee H, Hong MS, Chung JH, Joh TH, Lee H, Park HJ (2008) Proteomic analysis of the neuroprotective mechanisms of acupuncture treatment in a Parkinson’s disease mouse model. Proteomics 8:4822–4832CrossRefPubMedGoogle Scholar
  10. 10.
    Park HJ, Lim S, Joo WS, Yin CS, Lee HS, Lee HJ, Seo JC, Leem K, Son YS, Kim YJ, Kim CJ, Kim YS, Chung JH (2003) Acupuncture prevents 6-hydroxydopamine-induced neuronal death in the nigrostriatal dopaminergic system in the rat Parkinson’s disease model. Exp Neurol 180:93–98CrossRefPubMedGoogle Scholar
  11. 11.
    Kim YK, Lim HH, Song YK, Lee HH, Lim S, Han SM, Kim CJ (2005) Effect of acupuncture on 6-hydroxydopamine-induced nigrostratal dopaminergic neuronal cell death in rats. Neurosci Lett 384:133–138CrossRefPubMedGoogle Scholar
  12. 12.
    Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077CrossRefPubMedGoogle Scholar
  13. 13.
    Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz JB (2000) Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem 74:2213–2216CrossRefPubMedGoogle Scholar
  14. 14.
    Hayley S, Crocker SJ, Smith PD, Shree T, Jackson-Lewis V, Przedborski S, Mount M, Slack R, Anisman H, Park DS (2004) Regulation of dopaminergic loss by Fas in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neurosci 24:2045–2053CrossRefPubMedGoogle Scholar
  15. 15.
    Hirsch EC, Faucheux BA (1998) Iron metabolism and Parkinson’s disease. Mov Disord 13(Suppl 1):39–45PubMedGoogle Scholar
  16. 16.
    Hirsch EC, Hunot S, Damier P, Faucheux B (1998) Glial cells and inflammation in Parkinson’s disease: a role in neurodegeneration? Ann Neurol 44:S115–S120PubMedGoogle Scholar
  17. 17.
    Liang XB, Liu XY, Li FQ, Luo Y, Lu J, Zhang WM, Wang XM, Han JS (2002) Long-term high-frequency electro-acupuncture stimulation prevents neuronal degeneration and up-regulates BDNF mRNA in the substantia nigra and ventral tegmental area following medial forebrain bundle axotomy. Brain Res Mol Brain Res 108:51–59CrossRefPubMedGoogle Scholar
  18. 18.
    Liu XY, Zhou HF, Pan YL, Liang XB, Niu DB, Xue B, Li FQ, He QH, Wang XH, Wang XM (2004) Electro-acupuncture stimulation protects dopaminergic neurons from inflammation-mediated damage in medial forebrain bundle-transected rats. Exp Neurol 189:189–196CrossRefPubMedGoogle Scholar
  19. 19.
    Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36:2503–2508CrossRefPubMedGoogle Scholar
  20. 20.
    Liu Y, Peter D, Roghani A, Schuldiner S, Prive GG, Eisenberg D, Brecha N, Edwards RH (1992) A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell 70:539–551CrossRefPubMedGoogle Scholar
  21. 21.
    Takahashi N, Miner LL, Sora I, Ujike H, Revay RS, Kostic V, Jackson-Lewis V, Przedborski S, Uhl GR (1997) VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc Natl Acad Sci USA 94:9938–9943CrossRefPubMedGoogle Scholar
  22. 22.
    Toonen RF (2003) Role of Munc18-1 in synaptic vesicle and large dense-core vesicle secretion. Biochem Soc Trans 31:848–850CrossRefPubMedGoogle Scholar
  23. 23.
    Hanss B, Leal-Pinto E, Teixeira A, Christian RE, Shabanowitz J, Hunt DF, Klotman PE (2002) Cytosolic malate dehydrogenase confers selectivity of the nucleic acid-conducting channel. Proc Natl Acad Sci USA 99:1707–1712CrossRefPubMedGoogle Scholar
  24. 24.
    Korolainen MA, Goldsteins G, Nyman TA, Alafuzoff I, Koistinaho J, Pirttila T (2006) Oxidative modification of proteins in the frontal cortex of Alzheimer’s disease brain. Neurobiol Aging 27:42–53CrossRefPubMedGoogle Scholar
  25. 25.
    Thornalley PJ (1998) Glutathione-dependent detoxification of alpha-oxoaldehydes by the glyoxalase system: involvement in disease mechanisms and antiproliferative activity of glyoxalase I inhibitors. Chem Biol Interact 111–112:137–151CrossRefPubMedGoogle Scholar
  26. 26.
    Padmanabhan PK, Mukherjee A, Madhubala R (2006) Characterization of the gene encoding glyoxalase II from Leishmania donovani: a potential target for anti-parasite drugs. Biochem J 393:227–234CrossRefPubMedGoogle Scholar
  27. 27.
    Thornalley PJ (2003) Glyoxalase I––structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31:1343–1348CrossRefPubMedGoogle Scholar
  28. 28.
    Vander Jagt DL (1993) Glyoxalase II: molecular characteristics, kinetics and mechanism. Biochem Soc Trans 21:522–527PubMedGoogle Scholar
  29. 29.
    Xu Y, Chen X (2006) Glyoxalase II, a detoxifying enzyme of glycolysis byproduct methylglyoxal and a target of p63 and p73, is a pro-survival factor of the p53 family. J Biol Chem 281:26702–26713CrossRefPubMedGoogle Scholar
  30. 30.
    Rulli A, Carli L, Romani R, Baroni T, Giovannini E, Rosi G, Talesa V (2001) Expression of glyoxalase I and II in normal and breast cancer tissues. Breast Cancer Res Treat 66:67–72CrossRefPubMedGoogle Scholar
  31. 31.
    Gnerer JP, Kreber RA, Ganetzky B (2006) Wasted away, a Drosophila mutation in triosephosphate isomerase, causes paralysis, neurodegeneration, and early death. Proc Natl Acad Sci USA 103:14987–14993CrossRefPubMedGoogle Scholar
  32. 32.
    Munch G, Kuhla B, Luth HJ, Arendt T, Robinson SR (2003) Anti-AGEing defences against Alzheimer’s disease. Biochem Soc Trans 31:1397–1399CrossRefPubMedGoogle Scholar
  33. 33.
    Antognelli C, Baldracchini F, Talesa VN, Costantini E, Zucchi A, Mearini E (2006) Overexpression of glyoxalase system enzymes in human kidney tumor. Cancer J 12:222–228CrossRefPubMedGoogle Scholar
  34. 34.
    Kuhla B, Boeck K, Schmidt A, Ogunlade V, Arendt T, Munch G, Luth HJ (2007) Age- and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer’s disease brains. Neurobiol Aging 28:29–41CrossRefPubMedGoogle Scholar
  35. 35.
    Liu CZ, Yu JC, Zhang XZ, Fu WW, Wang T, Han JX (2006) Acupuncture prevents cognitive deficits and oxidative stress in cerebral multi-infarction rats. Neurosci Lett 393:45–50CrossRefPubMedGoogle Scholar
  36. 36.
    Siu FK, Lo SC, Leung MC (2004) Electroacupuncture reduces the extent of lipid peroxidation by increasing superoxide dismutase and glutathione peroxidase activities in ischemic-reperfused rat brains. Neurosci Lett 354:158–162CrossRefPubMedGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer 2009

Authors and Affiliations

  • Seung-Tae Kim
    • 1
  • Woongjoon Moon
    • 2
  • Younbyoung Chae
    • 2
  • Youn Jung Kim
    • 3
  • Hyejung Lee
    • 2
  • Hi-Joon Park
    • 2
  1. 1.Division of Meridian and Structural Medicine, School of Korean MedicinePusan National UniversityYangsan-siRepublic of Korea
  2. 2.Acupuncture and Meridian Science Research Center (AMSRC)Kyung Hee UniversitySeoulRepublic of Korea
  3. 3.East-West Nursing Research InstituteKyung Hee UniversitySeoulRepublic of Korea

Personalised recommendations