The Journal of Physiological Sciences

, Volume 59, Issue 4, pp 291–298 | Cite as

Spinal cholinergic mechanism of the relieving effects of electroacupuncture on cold and warm allodynia in a rat model of neuropathic pain

  • Jung Hyuk Park
  • Sun Kwang Kim
  • Ha Neul Kim
  • Boram Sun
  • Sungtae Koo
  • Sun Mi Choi
  • Hyunsu Bae
  • Byung-Il MinEmail author
Original Paper


This study was performed to determine whether spinal cholinergic systems mediate the relieving effects of electroacupuncture (EA) on cold and warm allodynia in a rat model of neuropathic pain. For neuropathic surgery, the right superior caudal trunk was resected at the level between the S1 and S2 spinal nerves innervating the tail. Two weeks after the injury, the intrathecal (i.t.) catheter was implanted. Five days after the catheterization, the rats were injected with atropine (non-selective muscarinic antagonist, 30 μg), mecamylamine (non-selective nicotinic antagonist, 50 μg), pirenzepine (M1 muscarinic antagonist, 10 μg), methoctramine (M2 antagonist, 10 μg) or 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) (M3 antagonist, 10 μg). Ten minutes after the injection, EA was applied to the ST36 acupoint for 30 min. The cold and warm allodynia were assessed by the tail immersion test [i.e., immersing the tail in cold (4°C) or warm (40°C) water and measuring the latency of an abrupt tail movement] before and after the treatments. The i.t. atropine, but not mecamylamine, blocked the relieving effects of EA on cold and warm allodynia. Furthermore, i.t. pirenzepine attenuated the antiallodynic effects of EA, whereas methoctramine and 4-DAMP did not. These results suggest that spinal muscarinic receptors, especially M1 subtype, mediate the EA-induced antiallodynia in neuropathic rats.


Neuropathic pain Allodynia Electroacupuncture Spinal cord Cholinergic Muscarinic 



This work was supported by the Acupuncture, Moxibustion and Meridian Research Project of Korea Institute of Oriental Medicine in 2006–2007 (K06070). Sun Kwang Kim was supported by the Graduate Research Scholarship from Graduate School of Kyung Hee University in 2007.


  1. 1.
    Abuaisha BB, Costanzi JB, Boulton AJ (1998) Acupuncture for the treatment of chronic painful peripheral diabetic neuropathy: a long-term study. Diabetes Res Clin Pract 39:115–121. doi: 10.1016/S0168-8227(97)00123-X PubMedCrossRefGoogle Scholar
  2. 2.
    Baek YH, Choi DY, Yang HI, Park DS (2005) Analgesic effect of electroacupuncture on inflammatory pain in the rat model of collagen-induced arthritis: mediation by cholinergic and serotonergic receptors. Brain Res 181–185. doi: 10.1016/j.brainres.2005.07.014
  3. 3.
    Bridges D, Thompson SWN, Rice ASC (2001) Mechanisms of neuropathic pain. Br J Anaesth 87:12–26. doi: 10.1093/bja/87.1.12 PubMedCrossRefGoogle Scholar
  4. 4.
    Chang FC, Tsai HY, Yu MC, Yi PL, Lin JG (2004) The central serotonergic system mediates the analgesic effect of electroacupuncture on ZUSANLI (ST36) acupoints. J Biomed Sci 11:179–185PubMedGoogle Scholar
  5. 5.
    Carabelli RA, Kellerman WC (1985) Phantom limb pain: relief by application of TENS to contralateral extremity. Arch Phys Med Rehabil 66:466–467PubMedGoogle Scholar
  6. 6.
    Chen SR, Pan HL (2001) Spinal endogenous acetylcholine contributes to the analgesic effect of systemic morphine in rats. Anesthesiology 95:525–530. doi: 10.1097/00000542-200108000-00039 PubMedCrossRefGoogle Scholar
  7. 7.
    Cherkin DC, Sherman KJ, Deyo RA, Shekelle PG (2003) A review of the evidence for the effectiveness, safety, and cost of acupuncture, massage therapy, and spinal manipulation for back pain. Ann Intern Med 138:898–906PubMedGoogle Scholar
  8. 8.
    Coggeshall RE, Carlton SM (1997) Receptor localization in the mammalian dorsal horn and primary afferent neurons. Brain Res Brain Res Rev 24:28–66. doi: 10.1016/S0165-0173(97)00010-6 PubMedCrossRefGoogle Scholar
  9. 9.
    Dai Y, Kondo E, Fukuoka T, Tokunaga A, Miki K, Noguchi K (2001) The effect of electroacupuncture on pain behaviors and noxious stimulus-evoked fos expression in a rat model of neuropathic pain. J Pain 2:151–159. doi: 10.1054/jpai.2001.19964 PubMedCrossRefGoogle Scholar
  10. 10.
    Dickenson AH, Suzuki R (2005) Opioids in neuropathic pain: clues from animal studies. Eur J Pain 9:113–116. doi: 10.1016/j.ejpain.2004.05.004 PubMedCrossRefGoogle Scholar
  11. 11.
    Dong ZQ, Ma F, Xie H, Wang YQ, Wu GC (2006) Downregulation of GFRalpha-1 expression by antisense oligodeoxynucleotide attenuates electroacupuncture analgesia on heat hyperalgesia in a rat model of neuropathic pain. Brain Res Bull 69:30–36. doi: 10.1016/j.brainresbull.2005.08.027 PubMedCrossRefGoogle Scholar
  12. 12.
    Eisenach JC (1999) Muscarinic-mediated analgesia. Life Sci 64:549–554. doi: 10.1016/S0024-3205(98)00600-6 PubMedCrossRefGoogle Scholar
  13. 13.
    Fields HL, Basbaum AI (1999) Endogenous pain control systems: brain steam spinal pathways and endorphin circuitry. In: Wall PD, Melzack R (eds) Textbook of pain. Churchill Livingstone, Edinburgh, pp 309–338Google Scholar
  14. 14.
    Filshie J (1988) The non-drug treatment of neuralgic and neuropathic pain of malignancy. Cancer Surv 7:161–193PubMedGoogle Scholar
  15. 15.
    Filshie J, White A (1998) Medical acupuncture: a western scientific approach. Churchill Livingstone, EdinburgGoogle Scholar
  16. 16.
    Finsen V, Persen L, Løvlien M, Veslegaard EK, Simensen M, Gåsvann AK, Benum P (1988) Transcutaneous electrical nerve stimulation after major amputation. J Bone Joint Surg Br 70:109–112PubMedGoogle Scholar
  17. 17.
    Ghelardini C, Galeotti N, Bartolini A (2000) Loss of muscarinic antinociception by antisense inhibition of M(1) receptors. Br J Pharmacol 129:1633–1640. doi: 10.1038/sj.bjp.0703268 PubMedCrossRefGoogle Scholar
  18. 18.
    Gillberg PG, Gordh T Jr, Hartvig P, Jansson I, Pettersson J, Post C (1989) Characterization of the antinociception induced by intrathecally administered carbachol. Pharmacol Toxicol 64:340–343PubMedCrossRefGoogle Scholar
  19. 19.
    Goodnick PJ, Breakstone K, Wen XL, Kumar A (2000) Acupuncture and neuropathy. Am J Psychiatry 157:1342–1343. doi: 10.1176/appi.ajp.157.8.1342-a PubMedCrossRefGoogle Scholar
  20. 20.
    Han JS (1987) The neurochemical basis of pain relief by acupuncture. Chinese Medical Science and Technology Press, BeijingGoogle Scholar
  21. 21.
    Han JS (2003) Acupuncture: neuropeptide release produced by electrical stimulation of different frequencies. Trends Neurosci 26:17–22. doi: 10.1016/S0166-2236(02)00006-1 PubMedCrossRefGoogle Scholar
  22. 22.
    Honda K, Koga K, Moriyama T, Koguchi M, Takano Y, Kamiya HO (2002) Intrathecal alpha2 adrenoceptor agonist clonidine inhibits mechanical transmission in mouse spinal cord via activation of muscarinic M1 receptors. Neurosci Lett 12:161–164. doi: 10.1016/S0304-3940(02)00073-3 CrossRefGoogle Scholar
  23. 23.
    Huang C, Li HT, Shi YS, Han JS, Wan Y (2004) Ketamine potentiates the effect of electroacupuncture on mechanical allodynia in a rat model of neuropathic pain. Neurosci Lett 368:327–331. doi: 10.1016/j.neulet.2004.07.073 PubMedCrossRefGoogle Scholar
  24. 24.
    Hwang JH, Hwang KS, Leem JK, Park PH, Han SM, Lee DM (1999) The antiallodynic effects of intrathecal cholinesterase inhibitors in a rat model of neuropathic pain. Anesthesiology 90:492–499. doi: 10.1097/00000542-199902000-00025 PubMedCrossRefGoogle Scholar
  25. 25.
    Hwang BG, Min BI, Kim JH, Na HS, Park DS (2002) Effects of electroacupuncture on the mechanical allodynia in the rat model of neuropathic pain. Neurosci Lett 320:49–52. doi: 10.1016/S0304-3940(02)00027-7 PubMedCrossRefGoogle Scholar
  26. 26.
    Iwamoto ET, Marion L (1993) Characterization of the anti-nociception produced by intrathecally administered muscarinic agonists in the rats. J Pharmacol Exp Ther 266:329–338PubMedGoogle Scholar
  27. 27.
    Kaptchuk TJ (2002) Acupuncture: theory, efficacy, and practice. Ann Intern Med 136:374–383PubMedGoogle Scholar
  28. 28.
    Kim JH, Min BI, Schmidt D, Lee HJ, Park DS (2000) The difference between electroacupuncture only and electroacupuncture with manipulation on analgesia in rats. Neurosci Lett 279:149–152. doi: 10.1016/S0304-3940(99)00994-5 PubMedCrossRefGoogle Scholar
  29. 29.
    Kim JH, Min BI, Na HS, Park DS (2004) Relieving effects of electroacupuncture on mechanical allodynia in neuropathic pain model of inferior caudal trunk injury in rat: mediation by spinal opioid receptors. Brain Res 998:230–236. doi: 10.1016/j.brainres.2003.11.045 PubMedCrossRefGoogle Scholar
  30. 30.
    Kim SK, Park JH, Bae SJ, Kim JH, Hwang BG, Min BI, Park DS, Na HS (2005) Effects of electroacupuncture on cold allodynia in a rat model of neuropathic pain: mediation by spinal adrenergic and serotonergic receptors. Exp Neurol 195:430–436. doi: 10.1016/j.expneurol.2005.06.018 PubMedCrossRefGoogle Scholar
  31. 31.
    Koga K, Honda K, Ando S, Harasawa I, Kamiya H, Takano Y (2004) Intrathecal clonidine inhibits mechanical allodynia via activation of the spinal muscarinic M1 receptor in streptozotocin-induced Diabetic mice. Eur J Pharmacol 505:75–82. doi: 10.1016/j.ejphar.2004.10.033 PubMedCrossRefGoogle Scholar
  32. 32.
    Koo ST, Park YI, Lim KS, Chung K, Chung JM (2002) Acupuncture analgesia in a new rat model of ankle sprain pain. Pain 99:423–431. doi: 10.1016/S0304-3959(02)00164-1 PubMedCrossRefGoogle Scholar
  33. 33.
    Koo ST, Lim KS, Chung K, Ju H, Chung JM (2008) Electroacupuncture-induced analgesia in a rat model of ankle sprain pain is mediated by spinal alpha-adrenoceptors. Pain 135:11–19. doi: 10.1016/j.pain.2007.04.034 PubMedCrossRefGoogle Scholar
  34. 34.
    Lao L, Zhang G, Wei F, Berman BM, Ren K (2001) Electro-acupuncture attenuates behavioral hyperalgesia and selectively reduces spinal Fos protein expression in rats with persistent inflammation. J Pain 2:111–117. doi: 10.1054/jpai.2001.19575 PubMedCrossRefGoogle Scholar
  35. 35.
    Li A, Wang Y, Xin J, Lao L, Ren K, Berman BM, Zhang RX (2007) Electroacupuncture suppresses hyperalgesia and spinal Fos expression by activating the descending inhibitory system. Brain Res 1186:171–179. doi: 10.1016/j.brainres.2007.10.022 PubMedCrossRefGoogle Scholar
  36. 36.
    Lograsso M, Nadeson R, Goodchild CS (2002) The spinal antinociceptive effects of cholinergic drugs in rats: receptor subtype specificity in different nociceptive tests. BMC Pharmacol 2:20. doi: 10.1186/1471-2210-2-20 PubMedCrossRefGoogle Scholar
  37. 37.
    Lopachin RM, Rudy TA, Yaksh TL (1981) An improved method for chronic catheterization of the rat spinal subarachnoid space. Physiol Behav 27:559–561. doi: 10.1016/0031-9384(81)90350-4 PubMedCrossRefGoogle Scholar
  38. 38.
    Martin TJ, Eisenach JC (2001) Pharmacology of opioid and non-opioid analgesics in chronic pain states. J Pharmacol Exp Ther 299:811–817PubMedGoogle Scholar
  39. 39.
    Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474. doi: 10.1016/S0301-0082(02)00009-6 PubMedCrossRefGoogle Scholar
  40. 40.
    Na HS, Han JS, Ko KH, Hong SK (1994) A behavioral model for peripheral neuropathy produced in rat’s tail by inferior caudal trunk injury. Neurosci Lett 177:50–52. doi: 10.1016/0304-3940(94)90042-6 PubMedCrossRefGoogle Scholar
  41. 41.
    Naguib M, Yaksh TL (1994) Antinociceptive effects of spinal cholinesterase inhibition and isobolographic analysis of the interaction with mu and alpha 2 receptor systems. Anesthesiology 80:1338–1348. doi: 10.1097/00000542-199406000-00022 PubMedCrossRefGoogle Scholar
  42. 42.
    Naguib M, Yaksh TL (1997) Characterization of muscarinic receptor subtypes that mediate antinociception in the rat spinal cord. Anesth Analg 85:847–853. doi: 10.1097/00000539-199710000-00025 PubMedCrossRefGoogle Scholar
  43. 43.
    Namaka M, Gramlich CR, Ruhlen D, Melanson M, Sutton I, Major J (2004) A treatment algorithm for neuropathic pain. Clin Ther 26:951–979. doi: 10.1016/S0149-2918(04)90171-3 PubMedCrossRefGoogle Scholar
  44. 44.
    Obata H, Saito S, Sasaki M, Goto F (2002) Possible involvement of a muscarinic receptor in the antiallodynic action of a 5-HT2 receptor agonist in rats with nerve ligation injury. Brain Res 932:124–128. doi: 10.1016/S0006-8993(02)02288-6 PubMedCrossRefGoogle Scholar
  45. 45.
    Radhakrishnan R, Sluka KA (2003) Spinal cholinergic receptors are activated during low- or high-frequency TENS-induced antihyperalgesia in rats. Neuropharmacology 45:1111–1119. doi: 10.1016/S0028-3908(03)00280-6 PubMedCrossRefGoogle Scholar
  46. 46.
    Rapson M, Wells N, Pepper J, Majid N, Boon H (2003) Acupuncture as a promising treatment for below-level central neuropathic pain: a retrospective study. J Spinal Cord Med 26:21–26PubMedGoogle Scholar
  47. 47.
    Takagi J, Yonehara N (1998) Serotonin receptor subtypes involved in modulation of electrical acupuncture. Jpn J Pharmacol 78:511–514. doi: 10.1254/jjp.78.511 PubMedCrossRefGoogle Scholar
  48. 48.
    Takeshige C, Sato T, Mera T, Hisamitsu T, Fang J (1992) Descending pain inhibitory system involved in acupuncture analgesia. Brain Res Bull 29:617–634. doi: 10.1016/0361-9230(92)90131-G PubMedCrossRefGoogle Scholar
  49. 49.
    Ulett GA, Han S, Han JS (1998) Electroacupuncture: mechanisms and clinical application. Biol Psychiatry 44(2):129–138. doi: 10.1016/S0006-3223(97)00394-6 PubMedCrossRefGoogle Scholar
  50. 50.
    Wang Y, Wang S, Wu J (1992) Effects of atropine on the changes of pain threshold and contents of leucine-enkephalin and catecholamines of the brain in rats induced by EA. J Tradit Chin Med 12:137–141PubMedGoogle Scholar
  51. 51.
    Zhang RX, Lao L, Wang L, Liu B, Wang X, Ren K, Berman BM (2004) Involvement of opioid receptors in electroacupuncture-produced anti-hyperalgesia in rats with peripheral inflammation. Brain Res 1020:12–17. doi: 10.1016/j.brainres.2004.05.067 PubMedCrossRefGoogle Scholar
  52. 52.
    Zhuo M, Gebhart GF (1991) Tonic cholinergic inhibition of spinal mechanical transmission. Pain 46:211–222. doi: 10.1016/0304-3959(91)90078-C PubMedCrossRefGoogle Scholar
  53. 53.
    Zimmerman M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110. doi: 10.1016/0304-3959(83)90201-4 CrossRefGoogle Scholar

Copyright information

© The Physiological Society of Japan and Springer 2009

Authors and Affiliations

  • Jung Hyuk Park
    • 1
    • 5
  • Sun Kwang Kim
    • 2
    • 3
  • Ha Neul Kim
    • 1
    • 5
  • Boram Sun
    • 1
  • Sungtae Koo
    • 6
  • Sun Mi Choi
    • 6
  • Hyunsu Bae
    • 2
    • 3
  • Byung-Il Min
    • 1
    • 4
    Email author
  1. 1.Department of East-West Medicine, Graduate SchoolKyung Hee UniversitySeoulSouth Korea
  2. 2.Department of Physiology, College of Oriental MedicineKyung Hee UniversitySeoulSouth Korea
  3. 3.BK21 Oriental Medical Science CenterKyung Hee UniversitySeoulSouth Korea
  4. 4.Department of Physiology, College of MedicineKyung Hee UniversitySeoulSouth Korea
  5. 5.Jaseng Hospital of Oriental MedicineSeoulSouth Korea
  6. 6.Department of Medical ResearchKorea Institute of Oriental MedicineDaejeonSouth Korea

Personalised recommendations