Journal of Echocardiography

, Volume 14, Issue 1, pp 21–29 | Cite as

Exercise echocardiography for structural heart disease

  • Masaki IzumoEmail author
  • Yoshihiro J. Akashi
Review Article


Since the introduction of transcatheter structural heart intervention, the term “structural heart disease” has been widely used in the field of cardiology. Structural heart disease refers to congenital heart disease, valvular heart disease, and cardiomyopathy. In structural heart disease, valvular heart disease is frequently identified in the elderly. Of note, the number of patients who suffer from aortic stenosis (AS) and mitral regurgitation (MR) is increasing in developed countries because of the aging of the populations. Transcatheter aortic valve replacement and percutaneous mitral valve repair has been widely used for AS and MR, individually. Echocardiography is the gold standard modality for initial diagnosis and subsequent evaluation of AS and MR, although the difficulties in assessing patients with these diseases still remain. Here, we review the clinical usefulness and prognostic impact of exercise echocardiography on structural heart disease, particularly on AS and MR.


Structural heart disease Echocardiography Exercise echocardiography Aortic stenosis Mitral regurgitation 


Compliance with ethical standards

Conflict of interest

Masaki Izumo and Yoshihiro J Akashi declare that they have no conflicts of interest to declare.


  1. 1.
    Nkomo VT, Gardin JM, Skelton TN, et al. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368:1005–11.CrossRefPubMedGoogle Scholar
  2. 2.
    Carabello BA, Paulus WJ. Aortic stenosis. Lancet. 2009;373:956–66.CrossRefPubMedGoogle Scholar
  3. 3.
    Vahanian A, Alfieri O, Andreotti F, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33:2451–96.CrossRefPubMedGoogle Scholar
  4. 4.
    Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC Guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:2440–92.CrossRefPubMedGoogle Scholar
  5. 5.
    Lancellotti P, Donal E, Magne J, et al. Risk stratification in asymptomatic moderate to severe aortic stenosis: the importance of the valvular, arterial and ventricular interplay. Heart. 2010;96:1364–71.CrossRefPubMedGoogle Scholar
  6. 6.
    Rafique AM, Biner S, Ray I, et al. Meta-analysis of prognostic value of stress testing in patients with asymptomatic severe aortic stenosis. Am J Cardiol. 2009;104:972–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Izumo M, Lancellotti P, Suzuki K, et al. Three-dimensional echocardiographic assessments of exercise-induced changes in left ventricular shape and dyssynchrony in patients with dynamic functional mitral regurgitation. Eur J Echocardiogr. 2009;10:961–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Izumo M, Suzuki K, Moonen M, et al. Changes in mitral regurgitation and left ventricular geometry during exercise affect exercise capacity in patients with systolic heart failure. Eur J Echocardiogr. 2011;12:54–60.CrossRefPubMedGoogle Scholar
  9. 9.
    Kou S, Suzuki K, Akashi YJ, et al. Global longitudinal strain by two-dimensional speckle tracking imaging predicts exercise capacity in patients with chronic heart failure. J Echocardiogr. 2011;9:64–72.CrossRefGoogle Scholar
  10. 10.
    Mizukoshi K, Suzuki K, Yoneyama K, et al. Early diastolic function during exertion influences exercise intolerance in patients with hypertrophic cardiomyopathy. J Echocardiogr. 2013;11:9–17.CrossRefGoogle Scholar
  11. 11.
    Suzuki K, Izumo M, Yoneyama K, et al. Influence of exercise-induced pulmonary hypertension on exercise capacity in asymptomatic degenerative mitral regurgitation. J Cardiol. 2015;66:246–52.CrossRefPubMedGoogle Scholar
  12. 12.
    Suzuki K, Izumo M, Kamijima R, et al. Influence of pulmonary vascular reserve on exercise-induced pulmonary hypertension in patients with systemic sclerosis. Echocardiography. 2015;32:428–35.CrossRefPubMedGoogle Scholar
  13. 13.
    Maréchaux S, Hachicha Z, Bellouin A, et al. Usefulness of exercise-stress echocardiography for risk stratification of true asymptomatic patients with aortic valve stenosis. Eur Heart J. 2010;31:1390–7.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Maréchaux S, Ennezat PV, LeJemtel TH, et al. Left ventricular response to exercise in aortic stenosis: an exercise echocardiographic study. Echocardiography. 2007;24:955–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Amato MC, Moffa PJ, Werner KE, et al. Treatment decision in asymptomatic aortic valve stenosis: role of exercise testing. Heart. 2001;86:381–6.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Alborino D, Hoffmann JL, Fournet PC, et al. Value of exercise testing to evaluate the indication for surgery in asymptomatic patients with valvular aortic stenosis. J Heart Valve Dis. 2002;11:204–9.PubMedGoogle Scholar
  17. 17.
    Das P, Rimington H, Chambers J. Exercise testing to stratify risk in aortic stenosis. Eur Heart J. 2005;26:1309–13.CrossRefPubMedGoogle Scholar
  18. 18.
    Lancellotti P, Lebois F, Simon M, et al. Prognostic importance of quantitative exercise Doppler echocardiography in asymptomatic valvular aortic stenosis. Circulation. 2005;112:I377–82.PubMedGoogle Scholar
  19. 19.
    Donal E, Thebault C, O’Connor K, et al. Impact of aortic stenosis on longitudinal myocardial deformation during exercise. Eur J Echocardiogr. 2011;12:235–41.CrossRefPubMedGoogle Scholar
  20. 20.
    Van Pelt NC, Stewart RA, Legget ME, et al. Longitudinal left ventricular contractile dysfunction after exercise in aortic stenosis. Heart. 2007;93:732–8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cooper R, Ghali J, Simmons BE, et al. Elevated pulmonary artery pressure. An independent predictor of mortality. Chest. 1991;99:112–20.CrossRefPubMedGoogle Scholar
  22. 22.
    Copeland JG, Griepp RB, Stinson EB, et al. Long-term follow-up after isolated aortic valve replacement. J Thorac Cardiovasc Surg. 1977;74:875–89.PubMedGoogle Scholar
  23. 23.
    Rodés-Cabau J, Webb JG, Cheung A, et al. Transcatheter aortic valve implantation for the treatment of severe symptomatic aortic stenosis in patients at very high or prohibitive surgical risk: acute and late outcomes of the multicenter Canadian experience. J Am Coll Cardiol. 2010;55:1080–90.CrossRefPubMedGoogle Scholar
  24. 24.
    Lancellotti P, Magne J, Donal E, et al. Determinants and prognostic significance of exercise pulmonary hypertension in asymptomatic severe aortic stenosis. Circulation. 2012;126:851–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D, et al. Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med. 2005;352:875–83.CrossRefPubMedGoogle Scholar
  26. 26.
    Suri RM, Vanoverschelde JL, Grigioni F, et al. Association between early surgical intervention vs watchful waiting and outcomes for mitral regurgitation due to flail mitral valve leaflets. JAMA. 2013;310:609–16.CrossRefPubMedGoogle Scholar
  27. 27.
    Kang DH, Kim JH, Rim JH, et al. Comparison of early surgery versus conventional treatment in asymptomatic severe mitral regurgitation. Circulation. 2009;119:797–804.CrossRefPubMedGoogle Scholar
  28. 28.
    Bach DS, Awais M, Gurm HS, et al. Failure of guideline adherence for intervention in patients with severe mitral regurgitation. J Am Coll Cardiol. 2009;54:860–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Messika-Zeitoun D, Johnson BD, Nkomo V, et al. Cardiopulmonary exercise testing determination of functional capacity in mitral regurgitation: physiologic and outcome implications. J Am Coll Cardiol. 2006;47:2521–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Magne J, Lancellotti P, Piérard LA. Exercise-induced changes in degenerative mitral regurgitation. J Am Coll Cardiol. 2010;56:300–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Stoddard MF, Prince CR, Dillon S, et al. Exercise-induced mitral regurgitation is a predictor of morbid events in subjects with mitral valve prolapse. J Am Coll Cardiol. 1995;25:693–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Magne J, Lancellotti P, Piérard LA. Exercise pulmonary hypertension in asymptomatic degenerative mitral regurgitation. Circulation. 2010;122:33–41.CrossRefPubMedGoogle Scholar
  33. 33.
    Schiros CG, Dell’Italia LJ, Gladden JD, et al. Magnetic resonance imaging with 3-dimensional analysis of left ventricular remodeling in isolated mitral regurgitation: implications beyond dimensions. Circulation. 2012;125:2334–42.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Madaric J, Watripont P, Bartunek J, et al. Effect of mitral valve repair on exercise tolerance in asymptomatic patients with organic mitral regurgitation. Am Heart J. 2007;154:180–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Lee R, Haluska B, Leung DY, et al. Functional and prognostic implications of LV contractile reserve in patients with asymptomatic severe mitral regurgitation. Heart. 2005;91:1407–12.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lancellotti P, Cosyns B, Zacharakis D, et al. Importance of left ventricular longitudinal function and functional reserve in patients with degenerative mitral regurgitation: assessment by two-dimensional speckle tracking. J Am Soc Echocardiogr. 2008;21:1331–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Donal E, Mascle S, Brunet A, et al. Prediction of left ventricular ejection fraction 6 months after surgical correction of organic mitral regurgitation: the value of exercise echocardiography and deformation imaging. Eur Heart J Cardiovasc Imaging. 2012;13:922–30.CrossRefPubMedGoogle Scholar
  38. 38.
    Kusunose K, Popović ZB, Motoki H, et al. Prognostic significance of exercise-induced right ventricular dysfunction in asymptomatic degenerative mitral regurgitation. Circ Cardiovasc Imaging. 2013;6:167–76.CrossRefPubMedGoogle Scholar
  39. 39.
    Magne J, Mahjoub H, Dulgheru R, et al. Left ventricular contractile reserve in asymptomatic primary mitral regurgitation. Eur Heart J. 2014;35:1608–16.CrossRefPubMedGoogle Scholar
  40. 40.
    Tcheng JE, Jackman JD Jr, Nelson CL, et al. Outcome of patients sustaining acute ischemic mitral regurgitation during myocardial infarction. Ann Intern Med. 1992;117:18.CrossRefPubMedGoogle Scholar
  41. 41.
    Lehmann KG, Francis CK, Dodge HT. Mitral regurgitation in early myocardial infarction: Incidence, 154 Y. Otsuji et al. clinical detection, and prognostic implications. Ann Intern Med. 1992;117:10.CrossRefPubMedGoogle Scholar
  42. 42.
    Lamas GA, Mitchell GF, Flaker GC, et al. Clinical significance of mitral regurgitation after acute myocardial infarction. Survival and ventricular enlargement investigators. Circulation. 1997;96:827.CrossRefPubMedGoogle Scholar
  43. 43.
    Grigioni F, Enriquez-Sarano M, Zehr KJ, et al. Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation. 2001;103:1759.CrossRefPubMedGoogle Scholar
  44. 44.
    Kisanuki A, Otsuji Y, Kuroiwa R, et al. Two-dimensional echocardiographic assessment of papillary muscle contractility in patients with prior myocardial infarction. J Am Coll Cardiol. 1993;21:932–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Lancellotti P, Gérard PL, Piérard LA. Long-term outcome of patients with heart failure and dynamic functional mitral regurgitation. Eur Heart J. 2005;26:1528–32.CrossRefPubMedGoogle Scholar
  46. 46.
    Piérard LA, Lancellotti P. Stress testing in valve disease. Heart. 2007;93:766–72.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lancellotti P, Troisfontaines P, Toussaint AC, et al. Prognostic importance of exercise-induced changes in mitral regurgitation in patients with chronic ischemic left ventricular dysfunction. Circulation. 2003;108:1713–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Lancellotti P, Lebrun F, Piérard LA. Determinants of exercise-induced changes in mitral regurgitation in patients with coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol. 2003;42:1921–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Lancellotti P, Gérard PL, Piérard LA. Long-term outcome of patients with heart failure and dynamic functional mitral regurgitation. Eur Heart J. 2005;26:1528–32.CrossRefPubMedGoogle Scholar
  50. 50.
    Maréchaux S, Neicu DV, Braun S, et al. Functional mitral regurgitation: a link to pulmonary hypertension in heart failure with preserved ejection fraction. J Card Fail. 2011;17:806–12.CrossRefPubMedGoogle Scholar
  51. 51.
    Miller WL, Mahoney DW, Enriquez-Sarano M. Quantitative Doppler-echocardiographic imaging and clinical outcomes with left ventricular systolic dysfunction: independent effect of pulmonary hypertension. Circ Cardiovasc Imaging. 2014;7:330–6.CrossRefPubMedGoogle Scholar
  52. 52.
    Lancellotti P, Magne J, Dulgheru R, et al. Clinical significance of exercise pulmonary hypertension in secondary mitral regurgitation. Am J Cardiol. 2015;115:1454–61.CrossRefPubMedGoogle Scholar
  53. 53.
    Giga V, Ostojic M, Vujisic-Tesic B, et al. Exercise-induced changes in mitral regurgitation in patients with prior myocardial infarction and left ventricular dysfunction: relation to mitral deformation and left ventricular function and shape. Eur Heart J. 2005;26:1860–5.CrossRefPubMedGoogle Scholar
  54. 54.
    Magne J, Pibarot P, Sengupta PP, et al. Pulmonary hypertension in valvular disease: a comprehensive review on pathophysiology to therapy from the HAVEC group. JACC Cardiovasc Imaging. 2015;8:83–99.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society of Echocardiography 2016

Authors and Affiliations

  1. 1.Division of Cardiology, Department of Internal MedicineSt. Marianna University School of MedicineKawasakiJapan

Personalised recommendations