Journal of Biorheology

, Volume 26, Issue 1–2, pp 11–20 | Cite as

Drift and fluctuating motion of artificial platelets during the lateral transport and adhesion process near the wall

  • Hiroaki Tobimatsu
  • Antoine Paragon
  • Yosuke Okamura
  • Shinji Takeoka
  • Ryo Sudo
  • Yasuo Ikeda
  • Kazuo Tanishita
Original Article


Recombinant glycoprotein Ibα latex beads (rGPIbα-LB) are a potential solution to overcoming platelet transfusion problems with artificial platelets. To understand the transport process of artificial platelets and to estimate the particle motion when adhering to the wall surface, we evaluated the lateral motion of rGPIbα-LB in terms of drift and random motion, because the lateral motion is an important factor for transport and adhesion. We observed the lateral motion of rGPIbα-LB flowing with red blood cells toward the immobilized von Willebrand factor (vWf) surface in a model arteriole at wall shear rates of 200–1000 s−1 and 0–40% Hct. At 40% Hct, wall shear rate dependence was observed for the drift motion, i.e. the lateral velocity of rGPIbα-LB toward the wall. In the near-wall region, the drift motion of contacting particles differed substantially from that of non-contacting particles. Additionally, the trajectories of contacting particles on the vWf surface had specific motion that was not observed on the BSA surface. These results suggest that the adhesion force between rGPIbα and vWf is highly associated with the motion of particles near the wall. These features are desirable for artificial platelets, particularly for the adhesion process.


Blood flow Glycoprotein Ibα von Willebrand factor Lateral motion Near-wall excess Adhesion 


  1. 1.
    Takeoka S, Teramura Y, Ohkawa H, Ikeda Y, Tsuchida E. Conjugation of von Willebrand factor-binding domain of platelet glycoprotein Ib alpha to size-controlled albumin microspheres. Biomacromolecules. 2000;1(2):290–5.CrossRefGoogle Scholar
  2. 2.
    Nishiya T, Murata M, Handa M, Ikeda Y. Targeting of liposomes carrying recombinant fragments of platelet membrane glycoprotein Iba immobilized von Willebrand factor under flow conditions. Biochem Biophys Res Commun. 2000;270:755–60.CrossRefGoogle Scholar
  3. 3.
    Aarts PA, van den Broek SA, Prins GW, Kuiken GD, Sixma JJ, Heethaar RM. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis. 1988;8(6):819–24.CrossRefGoogle Scholar
  4. 4.
    Tangelder GJ, Slaaf DW, Tierlinck HC, Alewijnse R, Reneman RS. Localization within a thin optical section of fluorescent blood platelets flowing in a microvessel. Microvasc Res. 1982;23(2):214–30.CrossRefGoogle Scholar
  5. 5.
    Tangelder GJ, Teirlinck HC, Slaaf DW, Reneman RS. Distribution of blood platelets flowing in arterioles. Am J Physiol. 1985;248(3 Pt 2):H318–23.Google Scholar
  6. 6.
    Woldhuis B, Tangelder GJ, Slaaf DW, Reneman RS. Concentration profile of blood platelets differs in arterioles and venules. Am J Physiol. 1992;262(4 Pt 2):H1217–23.Google Scholar
  7. 7.
    Bilsker DL, Waters CM, Kippenhan JS, Eckstein EC. A freeze-capture method for the study of platelet-sized particle distributions. Biorheology. 1989;26(6):1031–40.Google Scholar
  8. 8.
    Eckstein EC, Tilles AW, Millero FJD. Conditions for the occurrence of large near-wall excesses of small particles during blood flow. Microvasc Res. 1988;36(1):31–9.CrossRefGoogle Scholar
  9. 9.
    Eckstein EC, Koleski JF, Waters CM. Concentration profiles of 1 and 2.5 microns beads during blood flow. Hematocrit effects. ASAIO Trans. 1989;188(3):188–90.CrossRefGoogle Scholar
  10. 10.
    Tilles AW, Eckstein EC. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate. Microvasc Res. 1987;33(2):211–23.CrossRefGoogle Scholar
  11. 11.
    Waters CM, Eckstein EC. Concentration profiles of platelet-sized latex beads for conditions relevant to hollow-fiber hemodialyzers. Artif Organs. 1990;14(1):7–13.CrossRefGoogle Scholar
  12. 12.
    Zhao M, Kameneva MV, Antaki JF. Investigation of platelet margination phenomena at elevated shear stress. Biorheology. 2007;44:161–77.Google Scholar
  13. 13.
    Goldsmith HL. Red cell motions and wall interactions in tube flow. Fed Proc. 1971;30:1578–88.Google Scholar
  14. 14.
    Mody NA, King MR. Three-dimensional simulations of a platelet-shaped spheroid near a wall in shear flow. Phys Fluids. 2005;17:113302.ADSCrossRefGoogle Scholar
  15. 15.
    Mody NA, King MR. Platelet adhesive dynamics. Part 1: characterization of platelet hydrodynamic collisions and wall effects. Biophys J. 2008;95:2539–55.CrossRefGoogle Scholar
  16. 16.
    AlMomani T, Udaykumar HS, Marshall JS, Chandran KB. Micro-scale dynamic simulation of erythrocyte–platelet interaction in blood flow. Ann Biomed Eng. 2008;36(6):905–20.CrossRefGoogle Scholar
  17. 17.
    Crowl LM, Fogelson AL. Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells. Int J Numer Method Biomed Eng. 2010;26:471–87.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Eckstein EC, Belgacem F. Model of platelet transport in flowing blood with drift and diffusion terms. Biophys J. 1991;60(1):53–69.CrossRefGoogle Scholar
  19. 19.
    Yeh C, Calvez AC, Eckstein EC. An estimated shape function for drift in a platelet-transport model. Biophys J. 1994;67(3):1252–9.CrossRefGoogle Scholar
  20. 20.
    Goldsmith HL, Marlow JC. Flow behavior of erythrocytes II. Particle motions in concentrated suspensions of ghost cells. J Colloid Interface Sci. 1979;71:383–407.CrossRefGoogle Scholar
  21. 21.
    Bozzo J, Tonda R, Hernandez MR, Alemany M, Galan AM, Ordinas A, Escolar G. Comparison of the effects of human erythrocyte ghosts and intact erythrocytes on platelet interactions with subendothelium in flowing blood. Biorheology. 2001;38:429–37.Google Scholar
  22. 22.
    Bjerrum PJ. Hemoglobin-depleted human erythrocyte ghosts: characterization of morphology and transport functions. J Membr Biol. 1979;48(1):43–67.CrossRefGoogle Scholar
  23. 23.
    Takeoka S, Okamura Y, Teramura Y, Watanabe N, Suzuki H, Tsuchida E, Handa M, Ikeda Y. Function of fibrinogen γ-chain dodecapeptide-conjugated latex beads under flow. Biochem Biophys Res Commun. 2003;312:773–9.CrossRefGoogle Scholar
  24. 24.
    Eckstein EC, Bilsker DL, Waters CM, Kippenhan JS, Tilles AW. Transport of platelets in flowing blood. Ann NY Acad Sci. 1987;516:442–52.ADSCrossRefGoogle Scholar
  25. 25.
    Tsuji T, Takeoka S, Okamura Y, Sudo R, Ikeda Y, Tanishita K. Motion of polymerized albumin particles in a model arteriole in the presence of red blood cells. J Biorheol. 2009;23:29–34.CrossRefGoogle Scholar
  26. 26.
    Yeh C, Eckstein EC. Transient lateral transport of platelet-sized particles in flowing blood suspensions. Biophys J. 1994;66(5):1706–16.CrossRefGoogle Scholar
  27. 27.
    Kleinstreuer C. Biofluid dynamics. Boca Raton: CRC/Taylor & Francis; 2006. p. 254–7.Google Scholar
  28. 28.
    Kim S, Kong RL, Popel AS, Intaglietta M, Johnson PC. Temporal and spatial variations of cell-free layer width in arterioles. Am J Physiol Heart Circ Physiol. 2007;293:H1526–35.CrossRefGoogle Scholar
  29. 29.
    Savage B, Saldivar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell. 1996;84:289–97.CrossRefGoogle Scholar
  30. 30.
    Siedlecki CA, Lestini BJ, Marchant KK, Eppell SJ, Wilson DL, Marchant RE. Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood. 1996;88:2939–50.Google Scholar
  31. 31.
    Schneider SW, Nuschele S, Wixforth A, Gorzelanny C, Katz AA, Netz RR, Schneider MF. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci USA. 2007;104:7899–903.ADSCrossRefGoogle Scholar

Copyright information

© Japanese Society of Biorheology 2011

Authors and Affiliations

  • Hiroaki Tobimatsu
    • 1
  • Antoine Paragon
    • 1
  • Yosuke Okamura
    • 2
  • Shinji Takeoka
    • 2
  • Ryo Sudo
    • 1
  • Yasuo Ikeda
    • 3
  • Kazuo Tanishita
    • 1
  1. 1.Department of System Design Engineering, School of Science and TechnologyKeio UniversityYokohamaJapan
  2. 2.Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and EngineeringWaseda UniversityTokyoJapan
  3. 3.School of MedicineKeio UniversityTokyoJapan

Personalised recommendations