Advertisement

P colonies and kernel P systems

  • Erzsébet Csuhaj-Varjú
  • Marian GheorgheEmail author
  • Raluca Lefticaru
Article
  • 85 Downloads

Abstract

P colonies, tissue-like P systems with very simple components, have received constant attention from the membrane computing community and in the last years several new variants of the model have been considered. Another P system model, namely kernel P system, integrating the most successfully used features of membrane systems, has recently attracted interest and some important developments have been reported. In this paper we study connections among several classes of P colonies and kernel P systems, by showing how the behaviour of these P colony systems can be represented as kernel P systems. An example illustrates the way it is modelled by using P colonies and kernel P systems and some properties of it are formally proved in the latter approach.

Keywords

P systems P colonies Kernel P systems Formal verification Model checking 

Notes

Acknowledgements

The work of ECSV was supported by Grant No. K 120558 of the NKFIH—National Research, Development, and Innovation Office, Hungary. MG and RL acknowledge the support provided by the Romanian National Authority for Scientific Research, CNCS-UEFISCDI (Project No. PN-III-P4-ID-PCE-2016-0210).

References

  1. 1.
    Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Păun, Gh: Membrane Computing—An Introduction. Springer, Berlin (2002)CrossRefGoogle Scholar
  3. 3.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  4. 4.
    Mutyam, M., Krithivasan, K.: Generalized normal form for rewriting P systems. Acta Inf. 38(10), 721–734 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Mutyam, M., Prakash, V.J., Krithivasan, K.: Rewriting tissue P systems. J. Univers. Comput. Sci. 10(9), 1250–1271 (2004)MathSciNetGoogle Scholar
  6. 6.
    Krithivasan, K., Păun, G., Ramanujan, A.: On controlled P systems. Fundam. Inf. 131(3–4), 451–464 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, Gh, Vaszil, Gy: Computing with cells in environment: P colonies. J. Multiple Valued Log. Soft Comput. 12(3–4 SPEC. ISS.), 201–215 (2006)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Kelemen, J., Kelemenová, A., Păun, Gh: Preview of P colonies: a biochemically inspired computing model. In: Workshop and Tutorial Proceedings. Ninth International Conference on the Simulation and Synthesis of Living Systems (Alife IX), pp. 82–86, Boston (2004)Google Scholar
  9. 9.
    Kelemenová, A.: P colonies. In: Păun, G., Rozenberg, G., Salomaa, A. (eds.) The Oxford Handbook of Membrane Computing, pp. 584–594. Oxford University Press, Oxford (2010)Google Scholar
  10. 10.
    Ciencialová, L., Csuhaj-Varjú, E., Cienciala, L., Sosík, P.: P colonies. Bull. Int. Membr. Comput. Soc. 2, 129–156 (2016)zbMATHGoogle Scholar
  11. 11.
    Ciencialová, L., Csuhaj-Varjú, E., Kelemenová, A., Vaszil, Gy: Variants of P colonies with very simple cell structure. Int. J. Comput. Commun. Control 4(3), 224–233 (2009)CrossRefGoogle Scholar
  12. 12.
    Ciencialová, L., Cienciala, L., Sosík, P.: P colonies with evolving environment. In: Leporati et al. [19], pp. 151–164Google Scholar
  13. 13.
    Gheorghe, M., Ipate, F., Dragomir, C.: Kernel P systems. In: 10th Brainstorming Week on Membrane Computing pp. 153–170 (2012)CrossRefGoogle Scholar
  14. 14.
    Gheorghe, M., Ipate, F., Dragomir, C., Mierla, L., Valencia-Cabrera, L., García-Quismondo, M., Pérez-Jiménez, M.J.: Kernel P systems—version I. In: 11th Brainstorming Week on Membrane Computing (11BWMC) pp. 97–124 (2013)Google Scholar
  15. 15.
    Gheorghe, M., Konur, S., Ipate, F., Mierla, L., Bakir, M.E., Stannett, M.: An integrated model checking toolset for kernel P systems. In: Rozenberg, G., Salomaa, A., Sempere, J.M., Zandron, C., (eds.) Membrane Computing—16th International Conference, CMC 2015, Valencia, Spain, August 17–21, 2015, Revised Selected Papers, Lecture Notes in Computer Science, vol. 9504, 153–170. Springer, Berlin (2015)CrossRefGoogle Scholar
  16. 16.
    Gheorghe, M., Ipate, F., Konur, S.: Kernel P systems and relationships with other classes of P systems. In: Gheorghe, M., Petre, I., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) Multidisciplinary Creativity, pp. 64–76. Spandugino Publishing House, London (2015)Google Scholar
  17. 17.
    Krishna, S.N., Gheorghe, M., Dragomir, C.: Some classes of generalised communicating P systems and simple kernel P systems. In: Bonizzoni, P., Brattka, V., Löwe, B., (eds.) The Nature of Computation. Logic, Algorithms, Applications—9th Conference on Computability in Europe, CiE 2013, Milan, Italy, July 1–5, 2013. Proceedings, Lecture Notes in Computer Science, vol. 7921, pp. 284–293. Springer, Berlin (2013)Google Scholar
  18. 18.
    Dragomir, C., Ipate, F., Konur, S., Lefticaru, R., Mierla, L.: Model checking kernel P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A., (eds.) Membrane Computing—14th International Conference, CMC 2013, Chişinău, Republic of Moldova, August 20–23, 2013, Revised Selected Papers, Lecture Notes in Computer Science, vol. 8340, 151–172. Springer, Berlin (2013)CrossRefGoogle Scholar
  19. 19.
    Gheorghe, M., Ceterchi, R., Ipate, F., Konur, S.: Kernel P systems modelling, testing and verification—sorting case study. In: Leporati et al. [19], pp. 233–250Google Scholar
  20. 20.
    Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.): Membrane Computing—17th International Conference, CMC 2016, Milan, Italy, July 25–29, 2016, Revised Selected Papers, Lecture Notes in Computer Science, vol. 10105. Springer, Berlin (2017)Google Scholar
  21. 21.
    Gheorghe, M., Ipate, F., Lefticaru, R., Pérez-Jiménez, M.J., Turcanu, A., Valencia-Cabrera, L., García-Quismondo, M., Mierla, L.: 3-Col problem modelling using simple kernel P systems. Int. J. Comput. Math. 90(4), 816–830 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gheorghe, M., Konur, S., Ipate, F.: Kernel P systems and stochastic P systems for modelling and formal verification of genetic logic gates. In: Adamatzky, A. (ed.) Advances in Unconventional Computing: Volume 1: Theory, pp. 661–675. Springer, Berlin (2017)CrossRefGoogle Scholar
  23. 23.
    Reisig, W.: Elements of Distributed Algorithms: Modeling and Analysis with Petri Nets. Springer, Berlin (1998)CrossRefGoogle Scholar
  24. 24.
    Bernardini, F., Gheorghe, M., Margenstern, M., Verlan, S.: Producer/consumer in membrane systems and Petri nets. In: 3rd Conference on Computability in Europe, CiE 2007, Lecture Notes in Computer Science, vol. 4495, pp. 43–52. Springer, Berlin (2017)zbMATHGoogle Scholar
  25. 25.
    Krishna, S.N., Gheorghe, M., Ipate, F., Csuhaj-Varjú, E., Ceterchi, R.: Further results on generalised communicating P systems. Theoret. Comput. Sci. 701, 146–160 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Păun, G., Păun, R.: Membrane computing as a framework for modeling economic processes. In: SYNASC05, Romania, pp. 11–18. IEEE Press (2005)Google Scholar
  27. 27.
    Păun, G., Păun, R.: Membrane computing and economics. In: Păun, G., Rozenberg, G., Salomaa, A. (eds.) The Oxford Handbook of Membrane Computing, pp. 632–644. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar

Copyright information

© Indian Institute of Technology Madras 2018

Authors and Affiliations

  • Erzsébet Csuhaj-Varjú
    • 1
  • Marian Gheorghe
    • 2
    Email author
  • Raluca Lefticaru
    • 2
  1. 1.Department of Algorithms and Their Applications, Faculty of InformaticsELTE Eötvös Loránd UniversityBudapestHungary
  2. 2.School of Electrical Engineering and Computer ScienceUniversity of BradfordBradfordUK

Personalised recommendations