On some practical issues concerning the implementation of Cahn–Hilliard–Navier–Stokes type models



Suspensions, solutions and colloids are physical systems that can be generally denoted as “multicomponent systems” or “mixtures”. Physical systems of this type are frequently met in many industrial applications which rises the need for numerical simulations of the behaviour of such complex systems. A particular practical example of such system is glass/tin/nitrogen system that must be studied in modelling of the float glass process (Pilkington process) that partly motivated this research. The aim of this paper is to discuss the numerical challenges along with some practical issues concerning the implementation of a chosen Cahn–Hilliard–Navier–Stokes type model that showed up to be particularly suitable for the description of three-component systems. The discretization of the system of governing partial differential equations is based on the finite element method using the FEniCS Project. Numerical experiments carried out in two and three spatial dimensions verify our straightforward implementation that uses parallel direct sparse solvers to resolve the intermediate linear systems of algebraic equations. Possible improvements of the current implementation are briefly outlined within the paper.


Multicomponent flows Cahn–Hilliard–Navier–Stokes model Finite element method 

Mathematics Subject Classification

76T30 76D05 65M60 


  1. 1.
    Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22(3), 1150013 (2012). doi:10.1142/S0218202511500138 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aland, S., Voigt, A.: Benchmark computations of diffuse interface models for two-dimensional bubble dynamics. Int. J. Num. Methods Fluids 69(3), 747–761 (2012). doi:10.1002/fld.2611 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M., Wells, G.: The FEniCS project version 1.5. Arch. Num. Softw. 3(100), 9 (2015). doi:10.11588/ans.2015.100.20553. http://journals.ub.uni-heidelberg.de/index.php/ans/article/view/20553
  4. 4.
    Alnæs, M.S., Logg, A., Ølgaard, K.B., Rognes, M.E., Wells, G.N.: Unified form language: a domain-specific language for weak formulations of partial differential equations. ACM Trans. Math. Softw. 40(2), 9:1–9:37 (2014). doi:10.1145/2566630 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Amestoy, P.R., Duff, I.S., L’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001). doi:10.1137/S0895479899358194 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Amestoy, P.R., Guermouche, A., L’Excellent, J.Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006). doi:10.1016/j.parco.2005.07.004. http://www.sciencedirect.com/science/article/pii/S0167819105001328
  7. 7.
    Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.5, Argonne National Laboratory (2014). http://www.mcs.anl.gov/petsc
  8. 8.
    Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zhang, H.: PETSc Web page (2014). http://www.mcs.anl.gov/petsc
  9. 9.
    Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163–202. Birkhäuser, Boston, MA (1997). doi:10.1007/978-1-4612-1986-6_8 CrossRefGoogle Scholar
  10. 10.
    Blechta, J., Řehoř, M.: FENaPack 2016.1.0 (2016). http://dx.doi.org/10.5281/zenodo.56754
  11. 11.
    Boyanova, P., Neytcheva, M.: Efficient numerical solution of discrete multi-component Cahn–Hilliard systems. Comput. Math. Appl. 67(1), 106–121 (2014). doi:10.1016/j.camwa.2013.10.013 MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Boyer, F.: A theoretical and numerical model for the study of incompressible mixture flows. Comput. Fluids 31(1), 41–68 (2002). doi:10.1016/S0045-7930(00)00031-1. http://www.sciencedirect.com/science/article/pii/S0045793000000311
  13. 13.
    Boyer, F., Lapuerta, C.: Study of a three component Cahn–Hilliard flow model. ESAIM. Math. Model. Num. Anal. 40, 653–687 (2006). doi:10.1051/m2an:2006028. http://www.esaim-m2an.org/article_S0764583X06000288
  14. 14.
    Boyer, F., Lapuerta, C., Minjeaud, S., Piar, B., Quintard, M.: Cahn–Hilliard/Navier–Stokes model for the simulation of three-phase flows. Transp. Porous Media 82(3), 463–483 (2010). doi:10.1007/s11242-009-9408-z MathSciNetCrossRefGoogle Scholar
  15. 15.
    Boyer, F., Minjeaud, S.: Numerical schemes for a three component Cahn–Hilliard model. ESAIM. Math. Model. Num. Anal. 45, 697–738 (2011). doi:10.1051/m2an/2010072. http://www.esaim-m2an.org/article_S0764583X10000725
  16. 16.
    Boyer, F., Minjeaud, S.: Hierarchy of consistent \(n\)-component Cahn–Hilliard systems. Math. Models Methods Appl. Sci. 24(14), 2885–2928 (2014). doi:10.1142/S0218202514500407 MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Ding, H., Spelt, P.D., Shu, C.: Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 226(2), 2078–2095 (2007)CrossRefMATHGoogle Scholar
  18. 18.
    Fernández Oro, J.M., Argelles Daz, K.M., Santolaria Morros, C., Cobo Hedilla, A.F., Lemaille, M.: Multiphase modelling of pouring glass over the spout lip of an industrial float in the flat glass forming process. Int. J. Num. Methods Fluids 58(10), 1147–1177 (2008). doi:10.1002/fld.1793 CrossRefMATHGoogle Scholar
  19. 19.
    Geuzaine, C., Remacle, J.F.: Gmsh: a 3-d finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Num. Methods Eng. 79(11), 1309–1331 (2009). doi:10.1002/nme.2579 MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Gómez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.: Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197(49–50), 4333–4352 (2008). doi:10.1016/j.cma.2008.05.003 MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Gurtin, M.E., Polignone, D., Viñals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6(6), 815–831 (1996). doi:10.1142/S0218202596000341 MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Heida, M., Málek, J., Rajagopal, K.R.: On the development and generalizations of Cahn–Hilliard equations within a thermodynamic framework. Z. Angew. Math. Phys. 63(1), 145–169 (2012). doi:10.1007/s00033-011-0139-y MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977). doi:10.1103/RevModPhys.49.435 CrossRefGoogle Scholar
  24. 24.
    Kay, D., Welford, R.: Efficient numerical solution of Cahn–Hilliard–Navier–Stokes fluids in 2D. SIAM J. Sci. Comput. 29(6), 2241–2257 (2007). doi:10.1137/050648110. (electronic)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Liu, J., Dedè, L., Evans, J.A., Borden, M.J., Hughes, T.J.: Isogeometric analysis of the advective Cahn–Hilliard equation: spinodal decomposition under shear flow. J. Comput. Phys. 242, 321–350 (2013). doi:10.1016/j.jcp.2013.02.008 MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Logg, A., Mardal, K.A., Wells, G.N. (eds.): Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, Lecture Notes in Computational Science and Engineering, vol. 84. Springer, Heidelberg (2012). doi:10.1007/978-3-642-23099-8 Google Scholar
  27. 27.
    Logg, A., Wells, G.N., Hake, J.: DOLFIN: A C++/Python Finite Element Library. Springer, Heidelberg (2012)Google Scholar
  28. 28.
    Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998). doi:10.1098/rspa.1998.0273 MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Minjeaud, S.: An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier–Stokes model. Num. Methods Partial Differ.Equ. 29(2), 584–618 (2013). doi:10.1002/num.21721 MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Pilkington, L.A.B.: Review lecture. The float glass process. Proc. R. Soc. A-Math. Phys. Eng. Sci. 314(1516), 1–25 (1969). doi:10.1098/rspa.1969.0212. http://rspa.royalsocietypublishing.org/content/314/1516/1.short
  31. 31.
    Souček, O., Průša, V., Málek, J., Rajagopal, K.R.: On the natural structure of thermodynamic potentials and fluxes in the theory of chemically non-reacting binary mixtures. Acta Mech. 225(11), 3157–3186 (2014). doi:10.1007/s00707-013-1038-4 MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Vignal, P., Sarmiento, A., Côrtes, A.M., Dalcin, L., Calo, V.M.: Coupling Navier-Stokes and Cahn-Hilliard equations in a two-dimensional annular flow configuration. Procedia Computer Science 51, 934–943 (2015). doi:10.1016/j.procs.2015.05.228. http://www.sciencedirect.com/science/article/pii/S1877050915010364

Copyright information

© Indian Institute of Technology Madras 2016

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPraha 8 – KarlínCzech Republic

Personalised recommendations