Monte Carlo methods used in inverted hexagonal lipid phase and in simulations of thermally fluctuating lipid vesicles

  • Samo Penič
  • Šárka Perutková
  • Miha Fošnarič
  • Aleš Iglič
Article
  • 85 Downloads

Abstract

Two different uses of Monte Carlo methods in soft matter physics are presented in the following work. Firstly, the Monte Carlo simulated annealing is used to minimize the elastistic energy of the inverted hexagonal phase (HII) optimal geometry. We will do a brief overview on the mechanics of the HII lipid phase. In our model the expression for the lipid monolayer free energy consists of two energy contributions: the bending energy which involves also a deviatoric term, and the interstitial energy which describes the deformation energy due to stretching of the phospholipid molecule chains. On the basis of the derived expression for the lipid monolayer free energy, we will theoretically predict optimal geometry and physical conditions for the stability of the inverted hexagonal phase. Using the Monte Carlo simulated annealing method, we will theoretically describe first steps in the LαHII phase transition. Another interesting subject investigated by means of Monte Carlo simulations are the thermal fluctuations of nearly spherical vesicles. The theoretical basis of this analysis was done by Milner and Safran (Phys Rev A 36(9):4371–4379, 1987. doi:10.1103/PhysRevA.36.4371) that uses the mean field approximation. In this work we will show the application of the Monte Carlo simulations and show the correlation between the time mean simulated thermal fluctuations decomposed into spherical harmonics and the bending stiffness in 2-dimensional and 3-dimensional space.

Keywords

Monte Carlo methods Simulations Phospholipid membrane Inverted hexagonal phase Bending stiffness 

References

  1. 1.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science, New York (2002)Google Scholar
  2. 2.
    Cooper, G.M.: The Cell—A Molecular Approach, 2nd edn. Sinauer Associates, Sunderland (MA) (2000)Google Scholar
  3. 3.
    Berg, J.M., Tymoczko, J.L., Stryer, L.: Biochemistry, 5th edn. W H Freeman, San Francisco (2002)Google Scholar
  4. 4.
    Mouritsen, O.: Life—As a Matter of Fat: The Emerging Science of Lipidomics. The Frontiers Collection. Springer, Berlin (2004)Google Scholar
  5. 5.
    Mouritsen, O.G.: Life—As a Matter of Fat. Springer, Berlin (2005)Google Scholar
  6. 6.
    Seddon, J., Templer, R.: Liquid crystals and the living cell. New Sci. 130, 45–49 (1991)Google Scholar
  7. 7.
    Perutková, v, Daniel, M., Rappolt, M., Pabst, G., Dolinar, G., Kralj-Iglič, V., Iglič, A.: Elastic deformations in hexagonal phases studied by small-angle X-ray diffraction and simulations. Phys. Chem. Chem. Phys. 13, 3100–3107 (2011)CrossRefGoogle Scholar
  8. 8.
    Fošnarič, M., Penič, S., Iglič, A., Bivas, I.: Chapter twelve—Thermal fluctuations of phospholipid vesicles studied by Monte Carlo simulations. In: Iglič, A., Genova, J. (eds.) Advances in Planar Lipid Bilayers and Liposomes. Advances in Planar Lipid Bilayers and Liposomes, vol. 17, pp. 331–357. Academic Press (2013). doi:10.1016/B978-0-12-411516-3.00012-7
  9. 9.
    Penič, S., Iglič, A., Bivas, I., Fošnarič, M.: Bending elasticity of vesicle membranes studied by Monte Carlo simulations of vesicle thermal shape fluctuations. Soft Matter 11, 5004–5009 (2015). doi:10.1039/C5SM00431D CrossRefGoogle Scholar
  10. 10.
    Hyde, S., Anderson, S., Larsson, K., Blum, Z., Landth, T., Lidin, S., Ninham, B.: The Language of Shape. Elsevier, Amsterdam (1997)Google Scholar
  11. 11.
    Jahn, R., Lang, T., Südhof, T.: Membrane fusion. Cell 112, 519–533 (2003)CrossRefGoogle Scholar
  12. 12.
    Hui, S., Stewart, T., Boni, L., Yeagle, P.L.: Membrane fusion through point defects in bilayers. Science 212, 921–923 (1981)CrossRefGoogle Scholar
  13. 13.
    Siegel, D.: The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion. Biophys. J. 76, 291–313 (1999)CrossRefGoogle Scholar
  14. 14.
    Jerabek, H., Pabst, G., Rappolt, M., Stockner, T.: Membrane-mediated effect on ion channels induced by the anesthetic drug ketamine. J. Am. Chem. Soc. 132, 7990–7997 (2010)CrossRefGoogle Scholar
  15. 15.
    Gruner, S.: Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc. Natl. Acad. Sci. USA 82, 3665–3669 (1985)CrossRefGoogle Scholar
  16. 16.
    de Kruijff, B.: Lipid polymorphism and biomembrane function. Curr. Opin. Chem. Biol 1, 564–569 (1997)CrossRefGoogle Scholar
  17. 17.
    Zimmerberg, J., Kozlov, M.: How proteins produce cellular membrane curvature. Nat. Rev. 7, 9–19 (2006)CrossRefGoogle Scholar
  18. 18.
    Boyd, B., Rizwan, S., Dong, Y.D., Hook, S., Rades, T.: Self-assembled geometric liquid-crystalline nanoparticles imaged in three dimensions: Hexosomes are not necessarily flat hexagonal prisms. Langmuir 23, 12461–12464 (2007)CrossRefGoogle Scholar
  19. 19.
    Luzzati, V.: Biological significance of lipid polymorphism: the cubic phases. Curr. Opin. Struct. Biol. 7, 661–668 (1997)CrossRefGoogle Scholar
  20. 20.
    Luzzati, V., Tardieu, A., Gulik-Krzywicki, T., Rivas, E., Reiss-Husson, F.: Structure of the cubic phases of lipid water systems. Nature 220, 485–488 (1968)CrossRefGoogle Scholar
  21. 21.
    Rappolt, M.: Advances in planar lipid bilayer and liposomes. In: Leitmannova Liu, A. (ed.) The Biologically Relevant Lipid Mesophases as “Seen” by X-rays, pp. 253–283. Academic Press, Burlington (2006) Google Scholar
  22. 22.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell. Garland Science, New York (2008)Google Scholar
  23. 23.
    Yaghmur, A., Laggner, P., Zhang, S., Rappolt, M.: Tuning curvature and stability of monoolein bilayers by designer lipid-like peptide surfactants. PLoS ONE 2, e479 (2007)CrossRefGoogle Scholar
  24. 24.
    Harper, P., Mannock, D., Lewis, R., McElhaney, R., Gruner, S.: X-ray diffraction structures of some phosphatidylethanolamine lamellar and inverted hexagonal phases. Biophys. J. 81, 2693–2706 (2001)CrossRefGoogle Scholar
  25. 25.
    Mareš, T., Daniel, M., Perutková, Š., Perne, A., Dolinar, G., Iglič, A., Rappolt, M., Kralj-Iglič, V.: Role of phospholipid asymmetry in the stability of inverted hexagonal mesoscopic phases. J. Phys. Chem. B 112, 16575–16584 (2008)CrossRefGoogle Scholar
  26. 26.
    Rappolt, M., Hickel, A., Bringezu, F., Lohner, K.: Mechanism of the lamellar/inverse hexagonal phase transition examined by high resolution X-ray diffraction. Biophys. J. 84, 3111–3122 (2003)CrossRefGoogle Scholar
  27. 27.
    Rappolt, M., Hodzic, A., Sartori, B., Ollivon, M., Laggner, P.: Conformational and hydrational properties during the lβ to lα- and lα- to hii-phase transition in phosphatidylethanolamine. Chem. Phys. Lipids 154, 46–55 (2008). doi:10.1016/j.chemphyslip.2008.02.006 CrossRefGoogle Scholar
  28. 28.
    Churchward, M., Rogasevskaia, T., Brandman, D., Khosravani, H., Nava, P., Atkinson, J., Coorssen, J.: Specific lipids supply critical negative spontaneous curvature–an essential component of native Ca2+ -triggered membrane fusion. Biophys. J. 94, 3976–3986 (2008)CrossRefGoogle Scholar
  29. 29.
    Kozlov, M.: Determination of lipid spontaneous curvature from X-ray examinations of inverted hexagonal phases. Methods Mol. Biol. 400, 355–366 (2007)CrossRefGoogle Scholar
  30. 30.
    Rand, R., Fuller, N., Gruner, S., Parsegian, V.: Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress. Biochemistry 29, 76–87 (1990)CrossRefGoogle Scholar
  31. 31.
    Siegel, D.: Energetics of intermediates in membrane fusion:comparison of stalk and inverted micellar intermediate mechanisms. Biophys. J. 65, 2124–2140 (1993)CrossRefGoogle Scholar
  32. 32.
    Perutková, Š., Daniel, M., Dolinar, G., Rappolt, M., Kralj-Igli/vc, V., Iglič, A.: Advances in planar lipid bilayers and liposomes. In: Leitmannova Liu A. (ed.) Stability of the Inverted Hexagonal Phase, vol. 9, pp. 237–278. Academic Press, Burlington (2009)Google Scholar
  33. 33.
    KozIov, M., Leikin, S., Rand, R.: Bending, hydration and interstitial energies quantitatively account for the hexagonal-lamellar-hexagonal reentrant phase transition in dioleoylphosphatidylethanolamine. Biophys. J. 67, 1603–1611 (1994)CrossRefGoogle Scholar
  34. 34.
    Leikin, S., Kozlov, M.M., Fuller, N.L., Rand, R.P.: Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes. Biophys. J. 71, 2623–2632 (1996)CrossRefGoogle Scholar
  35. 35.
    Malinin, V., Lentz, B.: On the analysis of elastic deformations in hexagonal phases. Biophys. J. 86(5), 3324–3328 (2004). doi:10.1016/S0006-3495(04)74380-5 CrossRefGoogle Scholar
  36. 36.
    Seddon, J.M.: Structure of the inverted hexagonal (hii) phase, and non-lamellar phase transitions of lipids. Biochim. Biophys. Acta. Rev. Biomembr. 1031(1), 1–69 (1990). doi:10.1016/0304-4157(90)90002-T CrossRefGoogle Scholar
  37. 37.
    Turner, D., Gruner, S.: X-ray diffraction reconstruction of the inverted hexagonal (Hii) phase in lipid–water systems. Biochemistry 31, 1340–1355 (1992)CrossRefGoogle Scholar
  38. 38.
    Hamm, M., Kozlov, M.: Tilt model of inverted amphiphilic mesophases. Eur. Phys. J. B Cond. Matter Complex Syst. 6, 519–528 (1998). doi:10.1007/s100510050579 CrossRefGoogle Scholar
  39. 39.
    Templer, R.: Thermodynamic and theoretical aspects of cubic mesophases in nature and biological amphiphiles. Curr. Opin. Colloid Interface Sci. 3, 255–263 (1998)CrossRefGoogle Scholar
  40. 40.
    Kralj-Iglič, V., Babnik, B., Gauger, D., May, S., Iglič, A.: Quadrupolar ordering of phospholipid molecules in narrow necks of phospholipid vesicles. J. Stat. Phys. 125, 727–752 (2006). doi:10.1007/s10955-006-9051-9 CrossRefMATHGoogle Scholar
  41. 41.
    Fournier, J.: Nontopological saddle-splay and curvature instabilities from anisotropic membrane inclusions. Phys. Rev. Lett. 76, 4436–4439 (1996)CrossRefGoogle Scholar
  42. 42.
    Helfrich, W.: Elastic properties of lipid bilayers—theory and possible experiments. Z. Nat. 28c, 693–703 (1973)Google Scholar
  43. 43.
    Chen, Z., Rand, R.: The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys. J. 73, 267–276 (1997)CrossRefGoogle Scholar
  44. 44.
    Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Browicz, T.: Further observation of motion phenomena on red blood cells in pathological states. Zbl. Med. Wissen 28(1), 625–627 (1890)Google Scholar
  46. 46.
    Menger, F.M., Keiper, J.S.: Chemistry and physics of giant vesicles as biomembrane models. Curr. Opin. Chem. Biol. 2(6), 726–732 (1998). doi:10.1016/S1367-5931(98)80110-5 CrossRefGoogle Scholar
  47. 47.
    Noguchi, H.: Membrane simulation models from nanometer to micrometer scale. J. Phys. Soc. Jpn. 78(4), 041,007 (2009)CrossRefGoogle Scholar
  48. 48.
    Gompper, G., Kroll, D.M.: Random surface discretizations and the renormalization of the bending rigidity. J. Phys. I 6(10), 1305–1320 (1996)Google Scholar
  49. 49.
    Gompper, G., Kroll, D.M.: Triangulated-surface models of fluctuating membranes. In: Nelson, D., Piran, T., Weinberg, S. (eds.) Statistical Mechanics of Membranes and Surfaces, 2nd edn. World Scientific, Singapore (2004)Google Scholar
  50. 50.
    Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Nat. 28, 693–703 (1973)Google Scholar
  51. 51.
    Espriu, D.: Triangulated random surfaces. Phys. Lett. B 194(2), 271–276 (1987)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Itzykson, C.: Random geometry, lattices and fields. In: Jabad, J., Asorey, M., Cruz, A. (eds.) Proceedings of the GIFT Seminar, Jaca 85, pp. 130–188. World scientific, Singapore (1986)Google Scholar
  53. 53.
    Milner, S.T., Safran, S.A.: Dynamical fluctuations of droplet microemulsions and vesicles. Phys. Rev. A 36(9), 4371–4379 (1987). doi:10.1103/PhysRevA.36.4371 CrossRefGoogle Scholar
  54. 54.
    Bivas, I.: Elasticity and shape equation of a liquid membrane. Eur. Phys. J. B Cond. Matter Complex Syst. 29(2), 317–322 (2002)CrossRefGoogle Scholar

Copyright information

© Indian Institute of Technology Madras 2016

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations