Mesomechanical modeling of the thermo-viscoelastic, thermo-viscoplastic, and thermo-viscodamage response of asphalt concrete

  • Rashid K. Abu Al-Rub
  • Taesun You
  • Eyad A. Masad
  • Dallas N. Little
Original Research

Abstract

This paper focuses on the meso-scale computational modeling of the thermo-mechanical response of asphalt concrete mixes using for the first time a compressive coupled thermo-viscoelastic, thermo-viscoplastic, and thermo-viscodamage constitutive model. Asphalt concrete is represented by two-dimensional images of the microstructure that consist of three phases: aggregate, matrix, and interfacial transmission zone (ITZ). The matrix and ITZ are considered as thermo-viscoelastic, thermo-viscoplastic, and thermo-viscodamaged materials, while the aggregate is considered to be elastic. The effects of variation in aggregate shape, distribution, volume fraction, ITZ strength, strain rate, and temperature on the degradation and micro-damage patterns in asphalt concrete are investigated under uniaxial tension, compression, and repeated creep-recovery loading conditions. It is concluded that the aggregate volume fraction and distribution significantly influence the micromechanical response of asphalt concrete. Additionally, the results indicate that the constitutive model presented in this paper can provide a computational tool for predicting the overall macroscopic behavior of asphalt concrete based on the distribution of the microstructure constituents and the properties of these constituents. As such, the results of this computational model can be used to guide the design of asphalt concrete mixtures.

Keywords

Micromechanics Finite element method Damage Viscoelastic Viscoplastic Temperature Fatigue 

References

  1. 1.
    Abaqus.: Version 6.8., Providence, RI (2008)Google Scholar
  2. 2.
    Abu Al-Rub, R.K., Voyiadjis, G.: Gradient-enhanced coupled plasticity-anisotropic damage model for concrete fracture: computational aspects and applications. Int. J. Damage Mech. 18, 115–154 (2009)CrossRefGoogle Scholar
  3. 3.
    Abu Al-Rub, R.K., Masad, E.A., Huang, C.W.: Improving the sustainability of asphalt pavements through developing a predictive model with fundamental material properties, Final Report submitted to Southwest University Transportation Center, Report # SWUTC/08/476660-0007-1 (2009)Google Scholar
  4. 4.
    Abu Al-Rub, R.K., Darabi, M.K., Little, D., Masad, E.A.: A micro-damage healing model that improves prediction of fatigue life of asphalt mixes. Int. J. Eng. Sci. 48, 966–990 (2011)CrossRefGoogle Scholar
  5. 5.
    Chang, G., Meegoda, J.: Micromechanical model for temperature effects of hot-mix asphalt concrete. Transp. Res. Rec. 1687, 95–103 (1999)CrossRefGoogle Scholar
  6. 6.
    Collop, A., Scarpas, A., Kasbergen, C., de Bondt, A.: Development and finite element implementation of stress-dependent elastoviscoplastic constitutive model with damage for asphalt. Transp. Res. Rec. 1832(1), 96–104 (2003)CrossRefGoogle Scholar
  7. 7.
    Dai, Q., Sadd, M.: Parametric model study of microstructure effects on damage behavior of asphalt samples. Int. J. Pavement Eng. 5(1), 19–30 (2004)CrossRefGoogle Scholar
  8. 8.
    Dai, Q., Sadd, M., You, Z.: A micromechanical finite element model for linear and damage-coupled viscoelastic behaviour of asphalt mixture. Int. J. Num. Analyt. Methods Geomech. 30(11), 1135 (2006)MATHCrossRefGoogle Scholar
  9. 9.
    Darabi, M.K., Abu Al-Rub, R.K., Masad, E., Huang, C., Dallas, L.: A thermo-viscoelastic-viscoplastic-viscodamage constitutive model for asphalt materials. Int. J. Solids Struct. 48, 191–207 (2011)MATHCrossRefGoogle Scholar
  10. 10.
    Darabi, M.K., Abu Al-Rub, R.K., Masad, E.A., Little, D.: Thermodynamic based model for coupling viscoelastic, viscoplastic, and viscodamage constitutive behavior of asphalt mixtures. Int. J. Num. Analyt. Methods Geomech. (in press) (2010)Google Scholar
  11. 11.
    Dessouky, S., Masad, E., Little, D., Zbib, H.: Finite-element analysis of hot mix asphalt microstructure using effective local material properties and strain gradient elasticity. J. Eng. Mech. 132, 158 (2006)CrossRefGoogle Scholar
  12. 12.
    Haj-Ali, R., Muliana, A.: Numerical finite element formulation of the Schapery non-linear viscoelastic material model. Int. J. Num. Methods Eng. 59(1), 25–45 (2003)CrossRefGoogle Scholar
  13. 13.
    Huang, C., Masad, E., Muliana, A., Bahia, H.: Nonlinearly viscoelastic analysis of asphalt mixes subjected to shear loading. Mech. Time-Depend. Mater. 11(2), 91–110 (2007)CrossRefGoogle Scholar
  14. 14.
    Huang, C.W., Abu Al-Rub, R.K., Masad, E.A., Little, D.N.: Three dimensional simulations of asphalt pavement performance using a nonlinear viscoelastic-viscoplastic model. ASCE J. Mater. Civil Eng. 23, 56–68 (2011)CrossRefGoogle Scholar
  15. 15.
    Kachanov, L.M.: On time to rupture in creep conditions (in Russian). Izviestia Akadamii Nauk SSSR, Otdelenie Tekhnicheskikh Nauk 8, 26–31 (1958)Google Scholar
  16. 16.
    Kim, Y.R., Lutif, J.E.S., Allen, D.H.: Determining representative volume elements of asphalt concrete mixtures without damage. Trans. Res. Rec. 2127, 52–59 (2009)Google Scholar
  17. 17.
    Lai, J., Bakker, A.: 3-D Schapery representation for non-linear viscoelasticity and finite element implementation. Comput. Mech. 18(3), 182–191 (1996)MATHCrossRefGoogle Scholar
  18. 18.
    Lemaitre, J., Chaboche, J.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar
  19. 19.
    Li, X.J., Marasteanu, M.O., Kvasnak, A., Bausano, J., Williams, R.C., Worel, B.: Factors study in low-temperature fracture resistance of asphalt concrete. J. Mater. Civil Eng. 22(2), 145–152 (2010)CrossRefGoogle Scholar
  20. 20.
    Luo, H., Zhu, H., Miao, Y., Chen, C.: Simulation of top-down crack propagation in asphalt pavements. J. Zhejiang Univ. Sci. A 11(3), 223–230 (2010)MATHCrossRefGoogle Scholar
  21. 21.
    Mahmoud, E., Masad, E., Nazarian, S.: Discrete Element Analysis of the Influences of Aggregate Properties and Internal Structure on Fracture in Asphalt Mixtures. J. Mater. Civil Eng. 22, 10 (2010)CrossRefGoogle Scholar
  22. 22.
    Masad, E., Dessouky, S., Little, D.: Development of an elastoviscoplastic microstructural-based continuum model to predict permanent deformation in hot mix asphalt. Int. J. Geomech. 7, 119 (2007)CrossRefGoogle Scholar
  23. 23.
    Masad, E., Somadevan, N., Bahia, H., Kose, S.: Modeling and experimental measurements of strain distribution in asphalt mixes. J. Transp. Eng. 127, 477 (2001)CrossRefGoogle Scholar
  24. 24.
    Masad, E., Tashman, L., Little, D., Zbib, H.: Viscoplastic modeling of asphalt mixes with the effects of anisotropy, damage and aggregate characteristics. Mech. Mater. 37(12), 1242–1256 (2005)CrossRefGoogle Scholar
  25. 25.
    Mo, L., Huurman, M., Wu, S., Molenaar, A.: Investigation into stress states in porous asphalt concrete on the basis of FE-modelling. Finite Elem. Anal. Des. 43(4), 333–343 (2007)CrossRefGoogle Scholar
  26. 26.
    Mo, L., Huurman, M., Wu, S., Molenaar, A.: 2D and 3D meso-scale finite element models for ravelling analysis of porous asphalt concrete. Finite Elem. Anal. Des. 44(4), 186–196 (2008)CrossRefGoogle Scholar
  27. 27.
    Papagiannakis, A., Abbas, A., Masad, E.: Micromechanical analysis of viscoelastic properties of asphalt concretes. Transp. Res. Rec. 1789(1), 113–120 (2002)CrossRefGoogle Scholar
  28. 28.
    Perzyna, P.: Thermodynamic theory of viscoplasticity. Adv. Appl. Mech. 11, 313–354 (1971)CrossRefGoogle Scholar
  29. 29.
    Sadd, M., Dai, Q., Parameswaran, V., Shukla, A.: Simulation of asphalt materials using finite element micromechanical model with damage mechanics. Transp. Res. Rec. 1832(1), 86–95 (2003)CrossRefGoogle Scholar
  30. 30.
    Schapery, R.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9(4), 295–310 (1969)CrossRefGoogle Scholar
  31. 31.
    Tashman, L., Masad, E., Little, D., Zbib, H.: A micro structure-based viscoplastic model for asphalt concrete. Int. J. Plasticity 21(9), 1659–1685 (2005)MATHCrossRefGoogle Scholar
  32. 32.
    Woldekidan, M.: Performance study of C-Fix in PAC using a 2D finite element model. M.Sc. Thesis, Delft University of Technology, The Netherlands (2006)Google Scholar
  33. 33.
    You, Z., Adhikari, S., Dai, Q.: Three-dimensional discrete element models for asphalt mixtures. ASCE J. Eng. Mech. 134(12), 1053–1063 (2008)CrossRefGoogle Scholar

Copyright information

© Indian Institute of Technology Madras 2011

Authors and Affiliations

  • Rashid K. Abu Al-Rub
    • 1
  • Taesun You
    • 1
  • Eyad A. Masad
    • 1
    • 2
  • Dallas N. Little
    • 1
  1. 1.Zachry Department of Civil EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Mechanical Engineering Program, Texas A&M University at QatarDohaQatar

Personalised recommendations