Phase-field based simulation of microstructure evolution in technical alloy grades

  • G. J. Schmitz
  • B. Böttger
  • J. Eiken
  • M. Apel
  • A. Viardin
  • A. Carré
  • G. Laschet
Research Article


Scope of the present article is to review the current state of the art with respect to simulation of microstructure evolution based on the multiphase-field approach in technical alloy grades. Starting from a short overview about computational thermodynamics and kinetics and respective databases for technical alloys, an engineering approach to phase-field and multiphase-field models will be depicted in order to allow for a basic explanation of these methods—in general being developed by physicists and mathematicians—for materials scientists and metallurgists. These explanations are followed by examples of applications of the multiphase-field method to solidification and solid state transformations in steels, cast iron, superalloys, Al- and Mg-alloys, solders and other alloys and compounds. The article is concluded by a short description of present and future trends.


Multiphase-field method Technical alloys Microstructure simulation Thermodynamic databases ICME 



Funding of the depicted research by the German Research Foundation (DFG) in the frame of the projects AP196/1 and AP196/3 and within the Cluster of Excellence “Integrative Production in High Wage Countries” is gratefully acknowledged.


  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Thermo-Calc Software:
  5. 5.
    Saunders, N., Miodownik, A.: CALPHAD Calculation of Phase Diagrams: A Comprehensive Guide. Elsevier, New York. (1998)
  6. 6.
    Diffusion Controlled TRAnsformations: Software Provided by Thermo-Calc.
  7. 7.
    Kobayashi, R.: Modeling and numerical simulations of dendritic crystal growth. Physica D 63, 410–423 (1993)zbMATHCrossRefGoogle Scholar
  8. 8.
    Steinbach, I., Pezzolla, F., Nestler, B., Seeßelberg, M., Prieler, R., Schmitz, G.J., Rezende, J.L.L.: A phase field concept for multiphase systems. Physica D 94, 135–147 (1996)zbMATHCrossRefGoogle Scholar
  9. 9.
    Fries, S.G., Böttger, B., Eiken, J., Steinbach, I.: Upgrading CALPHAD to microstructure simulation: the phase-field method. Int. J. Mater. Res. 100, 2 (2009)CrossRefGoogle Scholar
  10. 10.
    Kitashima, T.: Coupling of the phase-field and CALPHAD methods for predicting multicomponent, solid-state phase transformations. Philos. Mag. 88(11), 1615–1637 (2008)CrossRefGoogle Scholar
  11. 11.
    Steinbach, I., Böttger, B., Eiken, J., Warnken, N., Fries, S.G.: CALPHAD and phase-field modeling: a successful liaison. J. Phase Equilib. Diffus. 28(1), 101 (2007)CrossRefGoogle Scholar
  12. 12.
    Steinbach, I.: Phase-field models in materials science—topical review. Model. Simul. Mater. Sci. Eng. 17, 073001 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Emmerich, H.: Advances of and by phase-field modelling in condensed-matter physics. Adv. Phys. 57, 1 (2008)CrossRefGoogle Scholar
  14. 14.
    Hecht, U., et al.: Advances of and by phase-field modelling in condensed-matter physics. Adv. Phys. 59(3), 257 (2010)Google Scholar
  15. 15.
    Beckermann, C., Diepers, H.-J., Steinbach, I., Karma, A., Tong, X.: Modeling melt convection in phase-field simulations of solidification. J. Comput. Phys. 154, 468–496 (1999)zbMATHCrossRefGoogle Scholar
  16. 16.
    Diepers, H.J.: Diploma thesis. Access, RWTH Aachen (1997)Google Scholar
  17. 17.
    Eiken, J.: Phase-field simulation of microstructure formation in technical magnesium alloys. Int. J. Mater. Res. 2010/04, 503–509Google Scholar
  18. 18.
    Eiken, J.: A phase-field model for technical alloy solidification. PhD thesis, Access RWTH Aachen (2010)Google Scholar
  19. 19.
    Tiaden, J.: Phase field simulations of the peritectic solidification of Fe-C. J. Cryst. Growth 198/199, 1275–1280 (1999)CrossRefGoogle Scholar
  20. 20.
    Nestler, B., Wheeler, A.A.: Anisotropic multiphase-field model: interfaces and junctions. Phys. Rev. E 57(3), 2602 (1998)CrossRefGoogle Scholar
  21. 21.
    Nestler, B., Wheeler, A.A.: Phase-field modeling of multiphase solidification. Comput. Phys. Commun. 147(1–2), 230 (2002)zbMATHCrossRefGoogle Scholar
  22. 22.
    Karma, A.: Phase field formulation for quantitative modelling of alloy solidification. Phys. Rev. Lett. 8711(11), 115701 (2001)CrossRefGoogle Scholar
  23. 23.
    Echebarria, B., Folch, R., Karma, A., Plapp, M.: Quantitative phase-field model of alloy solidification. Phys. Rev. E 70(6), 061604 (2004)CrossRefGoogle Scholar
  24. 24.
    Folch, R., Plapp, M.: Quantitative phase-field modeling of two-phase growth. Phys. Rev. E 72(1), 011602 (2005)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Plapp, M., Karma, A.: Eutectic colony formation: a phase-field study. Phys. Rev. E 66(6), 061608 (2002)CrossRefGoogle Scholar
  26. 26.
    Steinbach, I., Pezzolla, F.: A generalized field method for multiphase transformations using interface fields. Physica D 134, 385 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Ofori-Opoku, N., Provatas, N.: A quantitative multi-phase field model of polycrystalline alloy solidification. Acta Mater. 58(6), 2155 (2010)CrossRefGoogle Scholar
  28. 28.
    Provatas, N., Goldenfeld, N., Dantzig, J.: Efficient computation of dendritic microstructures using adaptive mesh refinement. Phys. Rev. Lett. 80(15), 3308–3311 (1998)CrossRefGoogle Scholar
  29. 29.
    Provatas, N., Goldenfeld, N., Dantzig, J.: Adaptive mesh refinement computation of solidification microstructures using dynamic data structures. J. Comput. Phys. 148(1), 265–290 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Eiken, J., Böttger, B., Steinbach, I.: Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. Phys. Rev. E 73, 066122 (2006)CrossRefGoogle Scholar
  31. 31.
    Allen, S., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1084 (1979)Google Scholar
  32. 32.
    Diepers, H.J., Beckermann, C., Steinbach, I.: Simulation of convection and ripening in a binary alloy mush using the phase-field-method. Acta Mater. 47(13), 3663–3678 (1999)CrossRefGoogle Scholar
  33. 33.
    Fan, D., Chen, L.Q.: Computer simulation of grain growth using a continuum field model. Acta Mater. 45(2), 611–622 (1997)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Moelans, N., Blanpain, B., Wollants, P.: Phase field simulations of grain growth in two-dimensional systems containing finely dispersed second-phase particles. Acta Mater. 54(4), 1175–1184 (2006)CrossRefGoogle Scholar
  35. 35.
    Moelans, N., Blanpain, B., Wollants, P.: Quantitative phase-field approach for simulating grain growth in anisotropic systems with arbitrary inclination and misorientation dependence. Phys. Rev. Lett. 101(2), 025502 (2008)CrossRefGoogle Scholar
  36. 36.
    Schaffnit, P., Apel, M., Steinbach, I.: Simulation of ideal grain growth using the multi-phase-field model. Mater. Sci. Forum 558–559, 1177 (2007)CrossRefGoogle Scholar
  37. 37.
    Apel, M., Böttger, B., Rudnizki, J., Schaffnit, P., Steinbach, I.: Grain growth simulations including particle pinning using the multi-phase-field concept. ISIJ Int. 49(7), 1024 (2009)CrossRefGoogle Scholar
  38. 38.
    Wheeler, A.A., Boettinger, W.J., McFadden, G.B.: Phase-field model for isothermal phase transitions in binary alloys. Phys. Rev. A 45(10), 7424 (1992)CrossRefGoogle Scholar
  39. 39.
    Kim, S.G., Kim, W.T., Suzuki, T., Ode, M.: Phase field modelling of eutectic solidification. J. Cryst. Growth 261(1), 135 (2004)CrossRefGoogle Scholar
  40. 40.
    Tiaden, J., Nestler, B., Diepers, H.-J., Steinbach, I.: The multiphase-field model with an integrated concept for modelling solute diffusion. Physica D 115, 73–86 (1998)zbMATHCrossRefGoogle Scholar
  41. 41.
    Ramirez, J.C., Beckermann, C., Karma, A., Diepers, H.-J.: Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion. Phys. Rev. E 69, 051607 (2004)CrossRefGoogle Scholar
  42. 42.
    Böttger, B., Grafe, U., Ma, D., Fries, S.G.: Simulation of microsegregation and microstructural evolution in directionally solidified superalloys. Mater. Sci. Technol. 16, 1425 (2000)CrossRefGoogle Scholar
  43. 43.
    Steinbach, I.: Pattern formation in constrained dendritic growth with solutal buoyancy. Acta Mater. 57, 2640–2645 (2009)CrossRefGoogle Scholar
  44. 44.
    Diepers, H.J.: Simulation des Primärabstandes gerichtet erstarrter Dendriten mit der Phasenfeldmethode. PhD thesis, Access RWTH Aachen (2002)Google Scholar
  45. 45.
    Diepers, H.J., Ma, D., Steinbach, I.: History effects during the selection of primary dendrite spacing. Comparison of phase-field simulations with experimental observations. J. Cryst. Growth 237–239, 149–153 (2002)CrossRefGoogle Scholar
  46. 46.
    Diepers, H.J., Steinbach, I.: Interaction of interdendritic convection and dendritic primary spacing: phase-field simulation and analytical modeling, solidification and gravity IV. Mater. Sci. Forum 508, 145 (2006)CrossRefGoogle Scholar
  47. 47.
    Zimmermann, G., Sturz, L., Walterfang, M., Dagner, J.: „Effect of melt flow on dendritic growth in AlSi7-based alloys during directional solidification. Int. J. Cast Met. Res. 22(1–4), 335 (2009)CrossRefGoogle Scholar
  48. 48.
    Grafe, U., Böttger, B., Tiaden, J., Fries, S.G.: Coupling of multicomponent thermodynamic databases to a phase field model: application to solidification and solid state transformations of superalloys. Scr. Mater. 42(12), 1179–1186 (2000)CrossRefGoogle Scholar
  49. 49.
    Grafe, U., Böttger, B., Tiaden, J., Fries, S.G.: Simulations of the initial transient during directional solidification of multicomponent alloys using the phase field method. Model. Simul. Mater. Sci. Eng. 8(6), 871 (2000)CrossRefGoogle Scholar
  50. 50.
    Grafe, U.: Numerische Simulation der Gefügebildung bei der Erstarrung und Wärmebehandlung von EInkristallsuperlegierungen. PhD thesis, Access RWTH Aachen (2000)Google Scholar
  51. 51.
    MICRESS®—The MICRostructure Evolution Simulation Software.
  52. 52.
    Qin, R.S., Wallach, E.R., Thomson, R.C.: A phase-field model for the solidification of multicomponent and multiphase alloys. J. Cryst. Growth 279(1–2), 163 (2005)CrossRefGoogle Scholar
  53. 53.
    Granasy, L., Egry, I., Ratke, L., et al.: Diffuse interface model of bulk heterogeneous nucleation. Scr. Metall. Mater. 31(5), 601–606 (1994)CrossRefGoogle Scholar
  54. 54.
    Warren, J.A., Pusztai, T., Kornyei, L., et al.: Phase field approach to heterogeneous crystal nucleation in alloys. Phys. Rev. B 79(1), 014204 (2009)CrossRefGoogle Scholar
  55. 55.
    Böttger, B., Eiken, J., Steinbach, I.: Phase field simulation of equiaxed solidification in technical alloys. Acta Mater. 54(10), 2697 (2006)CrossRefGoogle Scholar
  56. 56.
    Böttger, B., Eiken, J., Apel, M.: Phase-field simulation of microstructure formation in technical castings—a self-consistent homoenthalpic approach to the micro–macro problem. J. Comput. Phys. 228, 6784–6795 (2009)zbMATHCrossRefGoogle Scholar
  57. 57.
    Khachaturyan, A.G., Semenovskaya, S., Tsakalakos, T.: Elastic strain energy of inhomogeneous solids. Phys. Rev. B 52(22), 15909 (1999)CrossRefGoogle Scholar
  58. 58.
    Wang, Y.Z., Li, J.: Phase field modeling of defects and deformation. Acta Mater. 58(4), 1212–1235 (2010)CrossRefGoogle Scholar
  59. 59.
    Steinbach, I., Apel, M.: Multi phase field model for solid state transformation with elastic strain. Physica D 217, 153 (2006)zbMATHCrossRefGoogle Scholar
  60. 60.
    Steinbach, I., Apel, M.: The influence of lattice strain on pearlite formation in Fe–C. Acta Mater. 55, 4817 (2007)CrossRefGoogle Scholar
  61. 61.
    Laschet, G., Apel, M.: Thermo-elastic homogenization of 3-D steel microstructure simulated by phase-field method. Steel Res. Int. 81(8), 637 (2010)CrossRefGoogle Scholar
  62. 62.
    Benke, S.: A multi-phase-field model including inelastic deformation for solid state transformations. PAMM 8(1), 10407–10408 (2008)CrossRefGoogle Scholar
  63. 63.
    Böttger, B., Apel, M., Eiken, J., Schaffnit, P., Schmitz, G.J., Steinbach, I.: Phase-field simulation of equiaxed solidification: a homoenthalpic approach to the micro-macro problem. In: Modelling of Casting, Welding and Advanced Solidification Processes MCWASP—XII, Vancouver, pp. 119–127 (2009)Google Scholar
  64. 64.
    Böttger, B., Apel, M., Eiken, J., Schaffnit, P., Steinbach, I.: Phase-field simulation of solidification and solid-state transformations in multicomponent steels. Steel Res. Int. 79(8), 608 (2008)Google Scholar
  65. 65.
    Fukumoto, S., Nomoto, S.: Microstructure simulation for solidification of stainless steel by multi-phase-field model. J. Jpn. Inst. Met. 73(7), 502–508 (2009). (in Japanese)CrossRefGoogle Scholar
  66. 66.
    Böttger, B., Stratemeier, S., Subasic, E., Göhler, K., Steinbach, I., Senk, D.: Modeling of hot ductility during solidification of steel grades in continuous casting—part II. Adv. Eng. Mater. 12(4), 101 (2010)CrossRefGoogle Scholar
  67. 67.
    Senk, D., Stratemeier, S., Böttger, B., Göhler, K., Steinbach, I.: Modeling of hot ductility during solidification of steel grades in continuous casting—part I. Adv. Eng. Mater. 12(4), 94 (2010)CrossRefGoogle Scholar
  68. 68.
    Pariser, G., Schaffnit, P., Steinbach, I., Bleck, W.: Simulation of the gamma-alpha-transformation using the phase-field method. Steel Res. 72(9), 354–360 (2001)Google Scholar
  69. 69.
    Pariser, G.C.: Modeling the austenite to ferrite phase transformation for steel development. PhD thesis, Institute of Ferrous Metallurgy, RWTH Aachen (2006), Shaker, Aachen ISBN: 3-8322-5014-XGoogle Scholar
  70. 70.
    Mecozzi, M.G., Sietsma, J., van der Zwaag, S., Apel, M., Schaffnit, P., Steinbach, I.: Analysis of the gamma-alpha transition in C-Mn steels by dilatometry, Laser confocal scanning microscopy and phase-field modelling. In: Proceedings MS&T, p. 353ff (2003)Google Scholar
  71. 71.
    Mecozzi, M.G., Sietsma, J., van der Zwaag, S., Apel, M., Schaffnit, P., Steinbach, I.: Analysis of the gamma-alpha transformation in C-Mn steel by phase-field modelling. Metall. Mater. Trans. A 36A(9), 2327 (2005)CrossRefGoogle Scholar
  72. 72.
    Mecozzi, M.G.: Phase field modelling of the austenite to ferrite transformation in steels. PhD thesis, TU Delft (2007)Google Scholar
  73. 73.
    Thiessen, R.G., Richardson, I.M., Sietsma, J.: Physically based modelling of phase transformations during welding of low-carbon steel. Mater. Sci. Eng. A 427, 223 (2006)CrossRefGoogle Scholar
  74. 74.
    Thiessen, R.G., Richardson, I.M.: A physically based model for microstructure development in a macroscopic heat-affected zone: grain growth and recrystallization. Metall. Mater. Trans. B 37B, 655 (2006)CrossRefGoogle Scholar
  75. 75.
    Thiessen, R.G.: Physically-based modelling of material response to welding. PhD thesis, TU Delft (2006)Google Scholar
  76. 76.
    Militzer, M., Mecozzi, M.G., Sietsma, J., van der Zwaag, S.: Three-dimensional phase field modelling of the austenite-to-ferrite transformation. Acta Mater. 54(15), 3961–3972 (2006)CrossRefGoogle Scholar
  77. 77.
    Apel, M., Benke, S., Steinbach, I.: Virtual dilatometer curves and effective Young’s modulus of a 3D multiphase structure calculated by the phase-field method. Comput. Mater. Sci. 45, 589 (2009)CrossRefGoogle Scholar
  78. 78.
    Savran, V.I.: Austenite formation in C-Mn steel. PhD thesis, TU Delft (2009)Google Scholar
  79. 79.
    Azizi-Alizamini, H., Militzer, M.: Phase field modelling of austenite formation from ultrafine ferrite–carbide aggregates in Fe–C. Int. J. Mater. Res. 2010/04, 534–541Google Scholar
  80. 80.
    Rudnizki, J., Böttger, B., Prahl U., Bleck, W.: Phase-field modelling of austenite formation from a ferrite plus pearlite microstructure during annealing of cold-rolled dual-phase steel. Metall. Mater. Trans. A (in press)Google Scholar
  81. 81.
    Nakajima, K., Apel, M., Steinbach, I.: The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite: a multi-phase-field study. Acta Mater. 54, 3665–3672 (2006)CrossRefGoogle Scholar
  82. 82.
    Hillert, M.: The role of interfacial energy during solid state phase transformations. Jerekont Ann. 147, 757 (1957)Google Scholar
  83. 83.
    Zener, C.: Kinetics of the Decomposition of Austenite. Wiley, New York (1947)Google Scholar
  84. 84.
    Thiessen, R.G., Sietsma, J., Palmer, T.A., Elmer, J.W., Richardson, I.M.: Phase-field modelling and synchrotron validation of phase transformations in martensitic dual-phase steel. Acta Mater. 55, 601–614 (2007)CrossRefGoogle Scholar
  85. 85.
    Rudnizki, J., Zeislmair, B., Prahl, U., Bleck, W.: Prediction of abnormal grain growth during high temperature treatment. Comput. Mater. Sci. 49(2), 209 (2010)CrossRefGoogle Scholar
  86. 86.
    Rudnizki, J., Zeislmair, B., Prahl, U., Bleck, W.: Thermodynamical simulation of carbon profiles and precipitation evolution during high temperature case hardening. Steel Res. Int. 81(6), 472 (2010)CrossRefGoogle Scholar
  87. 87.
    Rudnizki, J., Konovalov, S., Prahl, U., Bleck, W.: Integrative microstructure simulation during high temperature case hardening. Steel Res. Int. (submitted)Google Scholar
  88. 88.
    Fayek, P., Prahl, U., Bleck, W.: Phase field simulations of the austenite grain growth of a microalloyed line pipe steel including particle pinning during the reheating process. Steel Res. Int. (2010) (submitted)Google Scholar
  89. 89.
    Schaffnit, P., Stallybrass, C., Bez, S., Schneider, A., Konrad, J., Liessem, A.: Quantitative phase-field simulation of the austenite grain growth between 900°C and 1400°C of a micro-alloyed line-pipe steel. In: 9th International Seminar Numerical Analysis of Weldability Graz-Seggau (2009) (pre-print)Google Scholar
  90. 90.
    Schaffnit, P., Stallybrass, C., Konrad, J., Kulgemeyer, A., Meuser, H.: Dual-scale phase-field simulation of grain growth upon reheating of a microalloyed line pipe steel. Int. J. Mater. Res. 2010/04, 549–554Google Scholar
  91. 91.
    Toloui, M., Militzer, M.: Phase field simulation of austenite grain growth in the HAZ of microalloyed linepipe steel. Int. J. Mater. Res. 2010/04, 542–548Google Scholar
  92. 92.
    Sommerfeld, A., Böttger, B., Tonn, B.: Graphite nucleation in cast iron melts based on solidification experiments and microstructure simulation. J. Mater. Sci. Technol. 24(3), 321–324 (2008)Google Scholar
  93. 93.
    Herzog, R., Warnken, N., Steinbach, I., Hallstedt, B., Walter, C., Müller, J., Hajas, D., Münstermann, E., Schneider, J.M., Nickel, R., Parkot, D., Bobzin, K., Lugscheider, E., Bednarz, P., Trunova, O., Singheiser, L.: Integrated approach for the development of advanced, coated gas turbine blades. Adv. Eng. Mater. 8(6), 535 (2006)CrossRefGoogle Scholar
  94. 94.
    Rösler, J., Götting, M., Del Genovese, D., Böttger, B., Kopp, R., Wolske, M., Schubert, F., Penkalla, H.J., Seliga, T., Thoma, A., Scholz, A., Berger, C.: Wrought Ni-base superalloys for steam turbine applications beyond 700°C. Adv. Eng. Mater. 5(7), 469–483 (2003)CrossRefGoogle Scholar
  95. 95.
    Warnken, N.: Simulation of microstructure formation during solidification and solution heat treatment of a novel single crystal superalloy. PhD thesis, Access RWTH Aachen (2007)Google Scholar
  96. 96.
    Ma, D., Grafe, U.: Microsegregation in directionally solidified dendritic-cellular structure of superalloy CMSX-4. Mater. Sci. Eng. A 270, 339–342 (1999)CrossRefGoogle Scholar
  97. 97.
    Warnken, N., Ma, D., Mathes, M., Steinbach, I.: Investigation of eutectic island formation in SX superalloys. Mater. Sci. Eng. A 413(12), 267–271 (2005)Google Scholar
  98. 98.
    Warnken, N., Drevermann, A., Ma, D., Fries, S.G., Steinbach, I.: Development of a simulation approach to microstructure evolution during solidification and homogenization using the phase-field method. In: Reed, R.C., et al. (eds.) Superalloys. TMS, Warrendale (2008)Google Scholar
  99. 99.
    Warnken, N., Ma, D., Drevermann, A., Reed, R.C., Fries, S.G., Steinbach, I.: Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys. Acta Mater. 57, 5862 (2009)CrossRefGoogle Scholar
  100. 100.
    Kovacevic, I.: Simulation of spheroidisation of elongated Si-particle in Al-Si alloys by the phase-field model. Mater. Sci. Eng. A 496(1–2), 345 (2008)Google Scholar
  101. 101.
    Wang, J.S., Lee, P.D.: Quantitative simulation of Fe-rich intermetallics in Al-Si-Cu-Fe alloys during solidification. In: Proceedings of 138th TMS Annual Meeting and Exhibition, San Francisco, vol. 1: Materials Processing and Properties (2009)Google Scholar
  102. 102.
    Böttger, B., Carré, A., Schmitz, G.J., Eiken, J., Apel, M.: Simulation of the microstructure formation in technical aluminum alloys using the multi-phase-field method. Trans. Indian Inst. Met. 62(4–5), 299 (2009)CrossRefGoogle Scholar
  103. 103.
    Nomoto, S., Minamoto, S., Nakajima, K.: Numerical simulation for grain refinement of aluminum alloy by multi-phase-field model coupled with CALPHAD. ISIJ Int. 49(7), 1019 (2009)CrossRefGoogle Scholar
  104. 104.
    Bünck, M., Warnken, N., Bührig-Polaczek, A.: Microstructure evolution of rheo-cast A356 aluminium alloy in consideration of different cooling conditions by means of the cooling channel process. J. Mater. Process. Technol. 210(4), 624 (2010)CrossRefGoogle Scholar
  105. 105.
    Carré, A., Böttger, B., Apel, M.: Phase-field modelling of gas porosity formation during the solidification of aluminium. Int. J. Mater. Res. 2010/04, 510–514Google Scholar
  106. 106.
    Böttger, B., Eiken, J., Ohno, M., Klaus, G., Fehlbier, M., Schmid-Fetzer, R., Steinbach, I., Bührig-Polaczek, A.: Controlling microstructure in magnesium alloys: a combined thermodynamic, experimental and simulation approach. Adv. Eng. Mater. 8(4), 241 (2006)CrossRefGoogle Scholar
  107. 107.
    Eiken, J., Böttger, B., Steinbach, I.: Simulation of microstructure evolution during solidification of magnesium-based alloys. Trans. Indian Inst. Met. 60(2–3), 179–184 (2007)Google Scholar
  108. 108.
    Eiken, J.: Dendritic growth texture evolution in Mg-based alloys investigated by phase-field simulation. Int. J. Cast Met. Res. 22(1–4), 86–89 (2009)CrossRefGoogle Scholar
  109. 109.
    Eiken, J.: Phase-field simulations of dendritic orientation selection in Mg-alloys with hexagonal anisotropy. Mater. Sci. Forum 649, 199–204 (2010)CrossRefGoogle Scholar
  110. 110.
    Khan, S.S., Hort, N., Eiken, J., Steinbach, I., Schmauder, S.: Numerical determination of heat distribution and castability simulations of as cast Mg-Al alloys. Adv. Eng. Mater. 11(3), 162 (2009)CrossRefGoogle Scholar
  111. 111.
    Schmitz, G.J., Zhou, B., Böttger, B., Villain, J., Klima, S.: Phase-field modeling and experimental observations of microstructures in solidifying Sn-Ag-Cu solders. Paper presented at the COST531 meeting in Bochum, to be submitted to Journal of Electronic Materials (2009)Google Scholar
  112. 112.
    Eiken, J., Apel, M., Witusiewicz, V.T., Zollinger, J., Hecht, U.: Interplay between α(Ti) nucleation and growth during peritectic solidification investigated by phase-field simulations. J. Phys. Condens. Matter 21, 464104 (2009)CrossRefGoogle Scholar
  113. 113.
    Schmitz, G.J., Nestler, B.: Simulation of phase transitions in multiphase systems: peritectic solidification of (RE)Ba2Cu3O7-x superconductors. Mater. Sci. Eng. B53, 23–27 (1998)CrossRefGoogle Scholar
  114. 114.
    Apel, M., Böttger, B., Diepers, H.-J., Steinbach, I.: 2D and 3D phase-field simulations of lamellar and fibrous eutectic growth. J. Cryst. Growth 237–239, 154–158 (2002)CrossRefGoogle Scholar
  115. 115.
    Apel, M., Franke, D., Steinbach, I.: Simulation of the crystallisation of silicon ribbons on substrate. Crystalline silicon for solar cells. Sol. Energy Mater. Sol. Cells 72, 201–208 (2002)CrossRefGoogle Scholar
  116. 116.
    Steinbach, I.: Ein Multi-Phasen-Feld Modell für facettiertes Kristallwachstum. PhD thesis, Access RWTH Aachen (2000)Google Scholar
  117. 117.
    Steinbach, I., Apel, M.: Phase-field simulation of rapid crystallization of silicon on substrate. Mater. Sci. Eng. A 449–451, 95 (2007)Google Scholar
  118. 118.
    de Bruycker, E., De Cooman, B.C., De Meyer, M.: Experimental study and microstructure simulations of Zn-Al-Mg coatings. In: Proceedings Galvatech, p. 723ff (2004)Google Scholar
  119. 119.
    Phelan, D.: Phase-field modeling of 55 wt% Al-Zn-Si alloy system. In: Proceedings Galvatech, p. 961ff (2004)Google Scholar
  120. 120.
    Galenko, P.K., Reutzel, S., Herlach, D.M., Fries, S.G., Steinbach, I., Apel, M.: Dendritic solidification in undercooled Ni–Zr–Al melts: experiments and modeling. Acta Mater. 57, 6166–6175 (2009)CrossRefGoogle Scholar
  121. 121.
    Kauzlaric, D., Lienemann, J., Pastewka, L., Greiner, A., Korvink, J.G.: Integrated process simulation of primary shaping: multi scale approaches. Microsyst. Technol. 14, 1789–1796 (2008)CrossRefGoogle Scholar
  122. 122.
    Amancherla, S., Kar, S., Bewlay, B., Ying, Y., Chang, A.: Thermodynamic and microstructural modelling of Nb-Si based alloys. J. Phase Equilib. Diffus. 28(1), 2 (2007)CrossRefGoogle Scholar
  123. 123.
    Schmitz, G.J., Prahl, U.: Toward a virtual platform for materials processing. JOM 61(5), 26 (2009)CrossRefGoogle Scholar
  124. 124.
    Guerdane, M., Wendler, F., Danilov, D., Teichler, H., Nestler, B.: Crystal growth and melting in NiZr alloy: linking phase-field modeling to molecular dynamics simulations. Phys. Rev. B 81(22), 224108 (2010)CrossRefGoogle Scholar

Copyright information

© Indian Institute of Technology Madras 2011

Authors and Affiliations

  • G. J. Schmitz
    • 1
  • B. Böttger
    • 1
  • J. Eiken
    • 1
  • M. Apel
    • 1
  • A. Viardin
    • 1
  • A. Carré
    • 1
  • G. Laschet
    • 1
  1. 1.Access e.V.AachenGermany

Personalised recommendations