Advertisement

Plant factories in the water-food-energy Nexus era: a systematic bibliographical review

  • Dafni Despoina Avgoustaki
  • George XydisEmail author
Review

Abstract

In recent years, several global issues related to food waste, increasing CO2 emissions, water pollution, over-fertilization, deforestation, loss of arable land, food security, and energy storage have emerged. Climate change urgently needs to be addressed from an ecological and social perspective. Implementing new indoor urban vertical farming (IUVF) operations is one way to combat the above-mentioned issues as well as foodborne illnesses, scarcity of drinking water, and more crop failure due to infection from plant pathogens and insect pests. A promising production mode is plant factories (PFs), which are indoor plant production systems completely isolated from outside environment. This paper mainly focuses on the comprehensive review of scientific papers in order to analyse the different applications of urban farming (UF) based on three different dimensions: a) the manufacturing techniques and equipment used; b) the energy that these systems require, the distribution of energy, and ways to minimize the energy-related cost; and c) the technological innovations applied in order to optimize the cultivation possibilities of IUVF.

Keywords

Plant factories Urban farming Water-food-energy Nexus Energy demand 

Notes

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest.

References

  1. Adams, S., & Boulard, T. (2007). Innovative technologies for an efficient use of energy. Acta Horticulturae, 801(1), 49–62.Google Scholar
  2. Al-Chalabi, M. (2015). Vertical farming: Skyscraper sustainability? Sustainable Cities and Society. Vol., 18, 74–77.  https://doi.org/10.1016/j.scs.2015.06.003.CrossRefGoogle Scholar
  3. Al-Kodmany, K. (2018). The Vertical Farm: A Review of Developments and Implications for the Vertical City (p. 2018). Southampton, UK: WIT Press.Google Scholar
  4. Avgoustaki, D. D. (2019). Optimization of Photoperiod and Quality Assessment of Basil Plants Grown in a Small-Scale Indoor Cultivation System for Reduction of Energy Demand. Energies, 12, 3980.CrossRefGoogle Scholar
  5. Badami, M. G., & Ramankutty, N. (2015). Urban agriculture and food security: A critique based on an assessment of urban land constraints. Global Food Security, 4, 8–15.  https://doi.org/10.1016/j.gfs.2014.10.003.CrossRefGoogle Scholar
  6. Barbosa, G. L., Gadelha, F. D. A., Kublik, N., Proctor, A., Reichelm, L., Weissinger, E., Wohlleb, G. M., & Halden, R. U. (2015). Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. International journal of environmental research and public health, 12(6), 6879–6891.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Barthel, S., & Isendahl, C. (2013). Urban gardens, agriculture, and water management: Sources of resilience for long-term food security in cities. Ecological Economics, 86, 224–234.  https://doi.org/10.1016/j.ecolecon.2012.06.018.CrossRefGoogle Scholar
  8. Becerril, H., & de los Rios, I. (2016). Energy Efficiency Strategies for Ecological Greenhouses: Experiences from Murcia (Spain). Energies, 9(866), 1–23.  https://doi.org/10.3390/en9110866.CrossRefGoogle Scholar
  9. Benisa, K., Turanb, I., Reinhartb, C., & Ferrão, P. (2017). Putting rooftops to use – A Cost-Benefit Analysis of food production vs. energy generation under Mediterranean climates. Cities.  https://doi.org/10.1016/j.cities.2018.02.011.CrossRefGoogle Scholar
  10. Benke, K., & Tomkins, B. (2017). Future food-production systems: vertical farming and controlled-environment agriculture. Sustainability: Science, Practice and Policy, 13(1), 13–26.Google Scholar
  11. Besthorn, F. H. (2013). Vertical Farming: Social Work and Sustainable Urban Agriculture in an Age of Global Food Crises. Australian Social Work, 66(2), 187–203.  https://doi.org/10.1080/0312407X.2012.716448.CrossRefGoogle Scholar
  12. Blasco, X., Mart, M., Herrero, J. M., Ramos, C., & Sanchis, J. (2007). Model-based predictive control of greenhouse climate for reducing energy and water consumption. Computers and Electronics in Agriculture, 55, 49–70.Google Scholar
  13. Boulard, T., Roy, J. C., Pouillard, J. B., Fatnassi, H., & Grisey, A. (2017). Modelling of micrometeorology, canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics. Science Engineering, 158, 110–133.Google Scholar
  14. Burr, J. F., Hernández, R., Kubota, C., Currey, C. J., Both, A. J., Bourget, C. M., Morrow, R. C., Meng, Q., & Runkle, E. S. (2015). Light-Emitting Diodes in Horticulture. Horticultural Reviews, 43, 1–88.Google Scholar
  15. Canakci, M., & Akinci, I. (2006). Energy use pattern analyses of greenhouse vegetable production. Energy, 31(8–9), 1243–1256.  https://doi.org/10.1016/j.energy.2005.05.021.CrossRefGoogle Scholar
  16. Carey, R., Larsen, K., Sheridan, J., & Candy, S. (2016). Melbourne’s food future: Planning a resilient city foodbowl. Victorian Eco-Innovation Lab: The University of Melbourne http://hdl.handle.net/11343/121776.Google Scholar
  17. Carlini, M., Honorati, T., & Castellucci, S. (2012). Photovoltaic greenhouses comparison of optical and thermal behavior for energy savings. Mathematical Problems in Engineering. Google Scholar
  18. Chel, K. (2010). Renewable energy for sustainable agriculture. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 31(1), 91–118.  https://doi.org/10.1051/agro/2010029 hal-00930477.CrossRefGoogle Scholar
  19. Chen, J., Xu, F., Tan, D., Shen, Z., Zhang, L., & Ai, Q. (2014). A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model. Applied Energy; Vol., 141, 106–118.  https://doi.org/10.1016/j.apenergy.2014.12.026.CrossRefGoogle Scholar
  20. Cicekli, M., & Barlas, N. T. (2014). Transformation of today greenhouses into high technology vertical farming systems for metropolitan regions. Journal of Environmental Protection and Ecology, 15(4), 1779–1785.Google Scholar
  21. Cuce, E., Harjunowibowo, D., & Cuce, P. M. (2016). Renewable and sustainable energy savings strategies for greenhouse systems: A comprehensive review. Renewable and Sustainable Energy Reviews, 64, 34–59.CrossRefGoogle Scholar
  22. Cunningham Yukech, C. M. (2017). Biomonapp’s Sensing & Monitoring of Plants/Fish & Water Quality for Ag Biotech & Bio Monitoring Environments. Proceedings of The 8th International Multi- Conference on Complexity, Informatics and Cybernetics (IMCIC 2017); 386–391.Google Scholar
  23. Delaide, B., Delhaye, G., Dermience, M., Gott, J., Soyeurt, H., & Jijakli, M. H. (2017). Plant and fish production performance, nutrient mass balances, energy and water use of the PAFF Box, a small-scale aquaponic system. Aquacultural Engineering. Vol., 78, 130–139.Google Scholar
  24. Demicco, F., Seferis, J., Bao, Y., & Scholz, M. E. (2014). The Eco-Restaurant of the Future: A Case Study. Journal of Foodservice Business Research, 17(4), 363–368.CrossRefGoogle Scholar
  25. Despommier, D. (2009). The Rise of Vertical Farms. Scientific American, 301(5), 80–87.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Despommier, D. (2010). The vertical farm: controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. Journal of Consumer Protection and Food Safety; Vol., 6, 233–236.CrossRefGoogle Scholar
  27. Despommier, D. (2012). Advantages of the Vertical Farm. Chapter, 16, 259–275.  https://doi.org/10.1007/98-1-4419-0745-5. CrossRefGoogle Scholar
  28. Despommier, D. (2013). Farming up the city: the rise of urban vertical farm. Trends in Biotechnology, 31(7), 388–389.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Dieleman, J. A., & Hemming, S. (2011). Energy Saving: from Engineering to Crop Management. High Technology for Greenhouse Systems, 65–74.Google Scholar
  30. Dyer, J. A., & Desjardins, R. L. (2006). An Integrated Index of Electrical Energy Use in Canadian Agriculture with Implications for Greenhouse Gas Emissions. Biosystems Engineering, 95(3), 449–460.  https://doi.org/10.1016/j.biosystemseng.2006.07.013.CrossRefGoogle Scholar
  31. Farzaneh-Gord, M., Arabkoohsar, A., Deymi, M., Bayaz, D., & Khoshnevis, A. B. (2013). New method for applying solar energy in greenhouses to reduce fuel consumption. Int J Agric & Biol Eng, 2013., 6(4), 64–75.Google Scholar
  32. Ferentinos, K. P., Katsoulas, N., Tzounis, A., Kittas, C., & Bartzanas, T. (2015). A climate control methodology based on wireless sensor networks in greenhouses. Acta Horticulturae; Vol., 1107, 75–82 https://www.researchgate.net/publication/288040808.CrossRefGoogle Scholar
  33. Fitz-Rodríguez, E., Kubota, C., Giacomelli, G. A., Tignor, M. E., Wilson, S. B., & McMahon, M. (2010). Dynamic modeling and simulation of greenhouse environments under several scenarios: A web-based application. Computers and Electronics in Agriculture; Vol., 70, 105–116.  https://doi.org/10.1016/j.compag.2009.09.010.CrossRefGoogle Scholar
  34. Fuldauer, L., Parker, B. M., Yaman, R., & Borrion, A. (2018). Managing anaerobic digestate from food waste in the urban environment: Evaluating the feasibility from an interdisciplinary perspective. Journal of Cleaner Production; Vol., 185, 929–940.CrossRefGoogle Scholar
  35. Ganguly, A., Misra, D., & Ghosh, S. (2010). Modeling and analysis of solar photovoltaic- electrolyzer-fuel cell hybrid power system integrated with a floriculture greenhouse. Energy and Buildings, 42(11), 2036–2043.CrossRefGoogle Scholar
  36. Graamans, L., van den Dobbelsteen, A., Meinen, E., Stanghellini, C. (2017). Plant factories: crop transpiration and energy balance. Agricultural Systems 153:138–147.CrossRefGoogle Scholar
  37. Graamans, L., Baeza, E., van den Dobbelsteen, A., Tsafaras, I., & Stanghellini, C. (2018). Plant factories versus greenhouses: Comparison of resource use efficiency, Agricultural Systems. Vol., 160, 31–43.  https://doi.org/10.1016/j.agsy.2017.11.003.CrossRefGoogle Scholar
  38. Ha, T., Lee, I., Kwon, K., & Hong, S. (2015). Computation and field experiment validation of greenhouse energy load using building energy simulation model. Int J Agric & Biol Eng, 8(6), 116–127 http://www.ijabe.org.Google Scholar
  39. Haque, M. S., de Sousa, A., Soares, C., Kjaer, K. H., Fidalgo, F., Rosenqvist, E., & Ottosen, C. (2017). Temperature Variation under Continuous Light Restores Tomato Leaf Photosynthesis and Maintains the Diurnal Pattern in Stomatal Conductance. Frontiers in Plant Science; Vol., 8, 1–13.Google Scholar
  40. Harbick, K., & Albright, L. D. (2016). Comparison of energy consumption: greenhouses and plant factories. Acta Horticulture, 285–292.  https://doi.org/10.17660/ActaHortic.2016.1134.38.
  41. Hassanien, R. H. E., Li, M., Dong, L., & W. (2016). Advanced applications of solar energy in agricultural greenhouses. Renewable and Sustainable Energy Reviews; Vol., 54, 989–1001.  https://doi.org/10.1016/j.rser.2015.10.095.CrossRefGoogle Scholar
  42. Hatirli, S. A., Ozkan, B., & Fert, C. (2005). Energy inputs and crop yield relationship in greenhouse tomato production. Renewable Energy; Vol., 31, 427–438.  https://doi.org/10.1016/j.renene.2005.04.007.CrossRefGoogle Scholar
  43. Higashi, T., Nishikawa, S., Okamura, N., & Fukuda, H. (2015). Evaluation of Growth under Non-24 h Period Lighting Conditions in Lactuca sativa L. Environ. Control Biol. Vol., 53(1), 7–12.  https://doi.org/10.2525/ecb.53.7.CrossRefGoogle Scholar
  44. Huang, L. C., Chen, Y. H., Chen, Y. H., Wang, C. F., & Hu, M. C. (2018). Food-Energy Interactive Tradeoff Analysis of Sustainable Urban Plant Factory Production Systems. Sustainability, 10(446), 1–12.  https://doi.org/10.1016/j.rser.2016.12.020.CrossRefGoogle Scholar
  45. Ikkonen, E. N., Shibaeva, T. G., Rosenqvist, E., & Ottosen, C. O. (2015). Daily temperature drop prevents inhibition of photosynthesis in tomato plants under continuous light. Photosynthetica, 53(3), 389–394.  https://doi.org/10.1007/s11099-015-0115-4.CrossRefGoogle Scholar
  46. Ismail F. and Gryzagoridis J. (2013). Sustainable development using renewable energy to boost aquaponics food production in needy communities. Cape Peninsula University Research Fund (URF).Google Scholar
  47. Janjai, S., Intawee, P., Kaewkiew, J., Sritus, C., & Khamvongsa, V. (2010). A large-scale solar greenhouse dryer using polycarbonate cover: Modeling and testing in a tropical environment of Lao People’s Democratic Republic. Renewable Energy, 36, 1053–1062.  https://doi.org/10.1016/j.renene.2010.09.008.CrossRefGoogle Scholar
  48. Janka, E., Körner, O., Rosenqvist, E., & Ottosen, C. O. (2016). A coupled model of leaf photosynthesis, stomatal conductance, and leaf energy balance for chrysanthemum (Dendranthema grandiflora). Computers and Electronics in Agriculture; Vol., 123, 264–274.  https://doi.org/10.1016/j.compag.2016.02.022.CrossRefGoogle Scholar
  49. Katsuyuki, T., Yoshinori, S., Rikuya, O., Takamasa, O., Koichi, T., & Takuya, F. (2018). Development of automatically controlled corona plasma system for inactivation of pathogen in hydroponic cultivation medium of tomato. Journal of Electrostatics; Vol., 91, 61–69.CrossRefGoogle Scholar
  50. Khandaker, M., & Kotzen, B. (2018). The potential for combining living wall and vertical farming systems with aquaponics with special emphasis on substrates. Aquaculture Research, 49(4), 1454–1468.CrossRefGoogle Scholar
  51. Khattab, N. M., Badr, M. A., Maalawi, K. Y., El Shenawy, E. T., El Ghetany, H. H., & Ibrahim, M. M. (2016). Hybrid renewable energy system for water desalination: A case study for small green house hydroponic cultivation in Egypt. ARPN Journal of Engineering and Applied Sciences, 11(21), 12380–12390.Google Scholar
  52. Kozai, T. (2013). Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory, Proceedings of the Japan Academy. Series B, 89(10), 447–461.  https://doi.org/10.2183/pjab.89.447.CrossRefGoogle Scholar
  53. Kozai, T. (2016). Chapter 16 – Plant production process, floor plan, and lay out of PFAL. In T. K. N. Takagaki (Ed.), Plant Factory (pp. 203–212). San Diego: Academic Press.CrossRefGoogle Scholar
  54. Kozai, T., Niu, G., & Takagaki, M. (Eds.). (2015). Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production (1st ed.) Academic Pr.Google Scholar
  55. Kubo, H. (2016). A Possibility of Open Zero Energy Plant Factory. Electronics Goes Green 2016+; 1–8; ISBN 978–3–00-053763-9.Google Scholar
  56. Langelaan, H. C., & Silva, F. P. D. (2013). Technology options for feeding 10 billion people. Food Engineering, 1(1), 1–16.Google Scholar
  57. Liaros, S., Botsis, K., & Xydis, G. (2016). Technoeconomic evaluation of urban plant factories: The case of basil (Ocimum basilicum). Science of the Total Environment, 554–555, 218–227.  https://doi.org/10.1016/j.scitotenv.2016.02.174.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Love, D. C., Uhl, M. S., & Genelloa, L. (2015). Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland. United States. Aquacultural Engineering; Vol., 68, 19–27.CrossRefGoogle Scholar
  59. Ma, E. Z. and Chan, M. (2016). A sustainable strategy of farming in radioactive contaminated farmland: A case study in Fukushima. GHTC 2016 – IEEE Global Humanitarian Technology Conference: Technology for the Benefit of Humanity, Conference Proceedings; 7–13.Google Scholar
  60. Mahadi, M. R., Thorp, K. R., Ismail, I. W., Kelly, R., Ahmad, D., Man, H. C. (2017). Plant Engineering. INTECH; Chapter 9: Adaptive Management Framework for Evaluating and Adjusting Microclimate Parameters in Tropical Greenhouse Crop Production Systems; 167–191;  https://doi.org/10.5772/intechopen.69972.Google Scholar
  61. Manos, D. P., Xydis, G., Hydroponics: Are we moving towards that direction only because of the Environment? A Discussion on Forecasting and a Systems Review, Environmental Science and Pollution Research, (2019) 26: 12662–12672,  https://doi.org/10.1007/s11356-019-04933-5, 2019.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Marucci, A., Monarca, D., Cecchini, M., Colantoni, A., Manzo, A., & Cappuccini, A. (2012). The semitransparent photovoltaic films for Mediterranean greenhouse: A new sustainable technology. Mathematical Problems in Engineering. Google Scholar
  63. Mekhilef, S., Faramarzi, S. Z., Saidur, R., & Salam, Z. (2013). The application of solar technologies for sustainable development of agricultural sector. Renewable and Sustainable Energy Reviews, 18(2013), 583–594.Google Scholar
  64. Mendez Perez, V. (2014). Study of the sustainability issues of food production using vertical farm methods in an urban environment within the state of Indiana. A Thesis Submitted to the Faculty of Purdue University In Partial Fulfillment of the Requirements (Master Thesis).Google Scholar
  65. Murayama, S., Tanimoto, M., Okoso, K., and Maeno, S. (2016). A Possibility of Open Zero Energy Plant Factory. Electronics Goes Green 2016+; 1–8.Google Scholar
  66. Namkung, Y. (2017). Are Consumers Willing to Pay more for Green Practices at Restaurants? Journal of Hospitality & Tourism Research, 41(3), 329–356.  https://doi.org/10.1177/1096348014525632.CrossRefGoogle Scholar
  67. Nikas, E., Sotiropoulos, A., & Xydis, G. A. (2018). Spatial Planning of Biogas Processing Facilities in Greece: The Sunflower's Capabilities and the Waste-to-Bioproducts Approach. Chemical Engineering Research and Design, (Special Issue: Energy Systems Engineering), 131, 234–244.  https://doi.org/10.1016/j.cherd.2018.01.004.CrossRefGoogle Scholar
  68. Ntinas, G. K., Fragos, V. P., & Nikita-Martzopoulou, C. (2014). Thermal analysis of a hybrid solar energy saving system inside a greenhouse. Energy Conversion and Management; Vol., 81, 428–439.CrossRefGoogle Scholar
  69. Omer, A. M. (2008). Green energies and the environment. Renewable and Sustainable Energy Reviews, 12(7), 1789–1821.CrossRefGoogle Scholar
  70. Pahlavan, R., Omid, M., & Akram, A. (2012). The relationship between energy inputs and crop yield in greenhouse basil production. Journal of Agricultural Science and Technology, 14(6), 1243–1253.Google Scholar
  71. Pérez, G., Coma, J., Martorell, I., Cabeza, L., & F. (2014). Vertical Greenery Systems (VGS) for energy saving in buildings: A review. Renewable and Sustainable Energy Reviews; Vol., 39, 139–165.CrossRefGoogle Scholar
  72. Pérez-Alonso, J., Pérez-García, M., Pasamontes-Romera, M., & Callejón-Ferre, A. J. (2012). Performance analysis and neural modelling of a greenhouse integrated photovoltaic system. Renewable and Sustainable Energy Reviews, 16(7), 4675–4685.CrossRefGoogle Scholar
  73. Pons, O., Nadal, A., Sanyé-Mengual, E., Llorach-Massana, P., Cuerva, E., Sanjuan-Delmàs, D., Muñoz, P., Oliver-Solà, J., Planas, C., & Rovira, M. R. (2015). Roofs of the future: rooftop greenhouses to improve buildings Metabolism. Procedia Engineering, 123, 441–448.CrossRefGoogle Scholar
  74. Ronay, K., & Dumitru, C. D. (2015). Hydroponic Greenhouse Energy Supply Based on Renewable Energy Sources. Procedia Technology, 19, 703–707.CrossRefGoogle Scholar
  75. Safikhani, T., Abdullah, A. M., Ossen, D. R., & Baharvand, M. (2014). A review of energy characteristic of vertical greenery systems. Renewable and Sustainable Energy Reviews, 40, 450–462.  https://doi.org/10.1016/j.rser.2014.07.166.CrossRefGoogle Scholar
  76. Sakamoto, M., & Suzuki, T. (2015). Effect of Root-Zone Temperature on Growth and Quality of Hydroponically Grown Red Leaf Lettuce (Lactuca sativa L. cv. Red Wave). American Journal of Plant Sciences, 6, 2350–2360.  https://doi.org/10.4236/ajps.2015.614238.CrossRefGoogle Scholar
  77. Sanjuan-Delmás, D., Llorach-Massana, P., Nadal, A., Ercilla-Montserrat, M., Muñoz, P., Montero, J. I., Josa, A., Gabarrell, X., & Rieradevall, J. (2018). Environmental assessment of an integrated rooftop greenhouse for food production in cities. Journal of Cleaner Production, 177, 326–337.CrossRefGoogle Scholar
  78. Shamshiri, R. R., Shamshiri, R. R., Ting, K. C., Thorp, K. R., Hameed, I. A., Weltzien, C., Ahmad, D., & Shad, Z. M. (2018). Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int J Agric & Biol Eng, 11(1), 1–22.CrossRefGoogle Scholar
  79. Siregar, S., Sari, M. I., & Jauhari, R. (2016). Automation system hydroponic smart solar power plant unit. Jurnal Teknologi, 78(5–7), 55–60.Google Scholar
  80. Sonneveld, P. J., Swinkels, G. L. A. M., Campen, J., Van Tuijl, B. A. J., Janssen, H. J. J., & Bot, G. P. A. (2010). Performance results of a solar greenhouse combining electrical and thermal energy production. Biosystems Engineering, 106(1), 48–57.CrossRefGoogle Scholar
  81. Sotiropoulos, Α., Xydis, G., Kontogianni, N., & Vakalis, S. (2019). Results on the implementation of an innovative dehydrated biological waste to ethanol management scheme. International Journal of Environmental Science and Technology, 16, 4967.  https://doi.org/10.1007/s13762-018-2135-7.CrossRefGoogle Scholar
  82. Speetjens, S. L., Stigter, J. D., & van Straten, G. (2009). Towards an adaptive model for greenhouse control. Computers and Electronics in Agriculture, 67(1–2), 1–8.CrossRefGoogle Scholar
  83. Story, D., & Kacira, M. (2015). Design and implementation of a computer vision-guided greenhouse crop diagnostics system. Machine Vision and Applications, 26, 495–506.  https://doi.org/10.1007/s00138-015-0670-5.CrossRefGoogle Scholar
  84. Tong, Y., Kozai, T., Nishioka, N., & Ohyama, K. (2012). Reductions In Energy Consumption And CO2 Emissions For Greenhouses Heated With Heat Pumps. Structures & Environment Division of ASABE, 28(3), 1–6.Google Scholar
  85. Vadiee, A., & Martin, V. (2012). Energy management in horticultural applications through the closed Greenhouse concept, state of the art. Renewable and Sustainable Energy Reviews, 16, 5087–5100.  https://doi.org/10.1016/j.rser.2012.04.022.CrossRefGoogle Scholar
  86. Vadiee, A., & Martin, V. (2013a). Thermal energy storage strategies for effective closed greenhouse design. Applied Energy, 109, 337–343.CrossRefGoogle Scholar
  87. Vadiee, A., & Martin, V. (2013b). Energy analysis and thermoeconomic assessment of the closed greenhouse – The largest commercial solar building. Applied Energy, 102, 1256–1266.  https://doi.org/10.1016/j.apenergy.2012.06.051.CrossRefGoogle Scholar
  88. Vadiee, A., & Martin, V. (2014). Energy management strategies for commercial greenhouses. Applied Energy, 114, 880–888.CrossRefGoogle Scholar
  89. Van Beveren, P. J. M., Bontsema, J., van Straten, G., & van Henten, E. J. (2015). Optimal control of greenhouse climate using minimal energy and grower defined bounds. Applied Energy, 159, 509–519.CrossRefGoogle Scholar
  90. Van Ginkel, S. W., Igou, T., & Chen, Y. (2017). Energy, water and nutrient impacts of California-grown vegetables compared to controlled environmental agriculture systems in Atlanta, GA. Resources, Conservation and Recycling, 122, 319–325.  https://doi.org/10.1016/j.resconrec.2017.03.003.CrossRefGoogle Scholar
  91. Van Straten, G., & Van Henten, E. J. (2010). Optimal greenhouse cultivation control: Survey and perspectives. IFAC Proceedings Volumes, 3(1).Google Scholar
  92. Wahby, M., Soorati, M. D., Mammen, S. V., Hamann, H. (2015). Evolution of Controllers for Robot- Plant Bio-Hybdrids: A Simple Case Study Using a Model of Plant Growth and Motion. Workshop Computational Intelligence, Dortmund; 1–20.Google Scholar
  93. Walsh, F. (2009). Human-Animal Bonds I: The Relational Significance of Companion Animals. Family Process, 48(4), 462–480.  https://doi.org/10.1111/j.1545-5300.2009.01296.x.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Wang, T., Wu, G., Chen, J., Cui, P., Chen, Z., Yan, Y., Zhang, Y., Li, M., Niu, D., Li, B., & Chen, C. (2017). Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect. Renewable and Sustainable Energy Reviews; Vol., 70, 1178–1188.CrossRefGoogle Scholar
  95. Xu, J., Li, Y., Wang, R. Z., & Liu, W. (2014). Performance investigation of a solar heating system with underground seasonal energy storage for greenhouse application. Energy; Vol., 67, 63–73.CrossRefGoogle Scholar
  96. Xydis, G., Liaros, S., & Botsis, K. (2017). Energy demand analysis via small scale hydroponic systems in suburban areas – An integrated energy-food nexus solution. Science of the Total Environment; 1–9.  https://doi.org/10.1016/j.scitotenv.2017.03.170.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Zhang, L., Xu, P., Mao, J., Tang, X., Li, Z., & Shi, J. (2015). A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study. Applied Energy; Vol., 156, 213–222.  https://doi.org/10.1016/j.apenergy.2015.07.036.CrossRefGoogle Scholar
  98. Zolnier, S., Lyra, G. B., & Gates, R. S. (2004). Evapotranspiration estimates for greenhouse lettuce using an intermitted nutrient film technique. Structures & Environment Division of ASAE, 47(1), 271–282.Google Scholar

Copyright information

© International Society for Plant Pathology and Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Department of Business Development and Technology, Centre for Energy TechnologiesAarhus UniversityHerningDenmark

Personalised recommendations