Advertisement

More than just corn and calories: a comprehensive assessment of the yield and nutritional content of a traditional Lacandon Maya milpa

  • Tomasz B. FalkowskiEmail author
  • Adolfo Chankin
  • Stewart A. W. Diemont
  • Robert W. Pedian
Original Paper
  • 65 Downloads

Abstract

The traditional ecological knowledge (TEK) of Lacandon Maya is expressed in their swidden (i.e., slash-and-burn), sequential agroforestry system. Successional pathways are initiated through controlled burns of secondary forest and by cultivating milpa: a swidden polyculture agroecosystem dominated by maize (corn; Zea mays). While past research demonstrated that traditional Maya milpas yield large quantities of corn that can meet caloric requirements for Lacandon communities, no studies have comprehensively quantified the yields of other crops cultivated in Lacandon milpas or assessed whether they can meet other nutritional requirements for local people. Using a case study approach, this research measured the agricultural yields and nutritional content of all foods (including crops and wild game) harvested from a traditional Lacandon milpa. Following traditional Lacandon agroforestry management practices, we performed a controlled burn of secondary forest and planted crops and trees in an experimental milpa in Lacanja Chansayab, Chiapas, Mexico. Over 3 years, we harvested, weighed, and calculated the nutritional content of all foodstuffs obtained from the milpa. Assuming an average family size of 5.3 individuals, yields from an average-sized milpa can meet most United States Food and Drug Administration daily value nutritional requirements per capita, including calories, fat, carbohydrates, fiber, sugar, protein, vitamins A and C, calcium, iron, zinc, and niacin. Diets derived exclusively from milpa may be deficient in saturated fat, cholesterol, sodium, calcium, and iodine, and harvests vary intra- and inter-annually. Lacandon farmers can supplement these harvests by foraging in their managed forest. These results underscore the potential of Lacandon agroforestry management to provide rural smallholder farmers in the Lacandon rainforest with food sovereignty while maintaining nearby forest cover to conserve biodiversity and other ecosystem services.

Keywords

Agroforestry Food security Food sovereignty Mexico Traditional ecological knowledge 

Notes

Acknowledgements

We thank the members of the Lacandon Maya community of Lacanja Chansayab, Chiapas, Mexico for their openness and patience. National Science Foundation Award 1231334 awarded to PI Stewart Diemont and National Geographic Society Award 71235 awarded to PI Tomasz Falkowski partially funded this work.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no financial conflict of interest. One of the authors, Adolfo Chankin, is a Lacandon Maya farmer.

Supplementary material

12571_2019_901_MOESM1_ESM.docx (22 kb)
ESM 1 (DOCX 22 kb)

References

  1. Affholder, F., Poeydebat, C., Corbeels, M., Scopel, E., & Tittonell, P. (2013). The yield gap of major food crops in family agriculture in the tropics: Assessment and analysis through field surveys and modelling. Field Crops Research, 143, 106–118.  https://doi.org/10.1016/j.fcr.2012.10.021.CrossRefGoogle Scholar
  2. Arias Reyes, L. M. (1995). La Produccion Milpera Actual en Yaxcaba, Yucatán. In E. H. Xoloxotzi, E. B. Baltazar, and S. L. Tacher (Eds.), La Milpa Maya En Yucatán Un Sistema De Producción Agrícola Tradicional Vol. 1 (pp. 171-199). Colegio De Postgraduados, Montecillo, Mexico.Google Scholar
  3. Arias Reyes, L. M. (1995). La Milpa En Yucatan: Un Sistema de Produccion Agricola Tradicional. In E. H. Xolocotzi, E. B. Baltazar, & S. L. Tacher (Eds.), Vol. 1. Colegio de Postgrados (pp. 171–199). Mexico: Montecillo.Google Scholar
  4. Atran, S., Chase, A. F., Fedick, S. L., Knapp, G., Mckillop, H., Marcus, J., et al. (1993). Itza Maya tropical agro-forestry. Current Anthropology, 34(5), 633–700.CrossRefGoogle Scholar
  5. Bacon, C. M., Sundstrom, W. A., Flores Gómez, M. E., Ernesto Méndez, V., Santos, R., Goldoftas, B., & Dougherty, I. (2014). Explaining the “hungry farmer paradox”: Smallholders and fair trade cooperatives navigate seasonality and change in Nicaragua’s corn and coffee markets. Global Environmental Change, 25(1), 133–149.  https://doi.org/10.1016/j.gloenvcha.2014.02.005.CrossRefGoogle Scholar
  6. Bassie-Sweet, K. (2000). Corn deities and the male/female principle. In La Tercera Mesa Redonda de Palenque.Google Scholar
  7. Bellon, M. R., Berthaud, J., Agropolis, A., & France, J. B. (2014). Editor ’ s choice series on agricultural ethics transgenic maize and the evolution of landrace diversity in Mexico. The Importance of Farmers ’ Behavior 1, 134(March), 883–888.  https://doi.org/10.1104/pp.103.038331.relatives.Google Scholar
  8. Berkes, F. (2008). Sacred ecology (2nd ed.). New York: Taylor & Francis.CrossRefGoogle Scholar
  9. Bernstein, R. H., & Herdt, R. W. (1977). Towards an understanding of Milpa agriculture : The Belize case. The Journal of Developing Areas, 11(3), 373–392.Google Scholar
  10. Boremanse, D. (1998). Hach Winik: The Lacandon Maya of Chiapas, southern Mexico. Albany: Institute for Mesoamerican Studies, University of Albany.Google Scholar
  11. Calleros-Rodríguez, H. (2014). Land, conflict, and political process: The case of the Lacandon community, Chiapas, Mexico (1972-2012). Journal of Peasant Studies, 41(1), 127–155.  https://doi.org/10.1080/03066150.2013.873891.CrossRefGoogle Scholar
  12. Collier, G. A., & Quaratiello, E. L. (2005). Basta!: Land and the Zapatista rebellion in Chiapas. Food First Books.Google Scholar
  13. Consejo Nacional de Evaluacion de la Politica de Desarrollo Social. (2012). Anexo estadístico de pobreza en México. http://www.coneval.org.mx/Medicion/MP/Paginas/Anexo-estadístico-pobreza-2012.aspx. Accessed 1 Dec 2017.
  14. Contreras, C. U., Libreros, G. M. D., & Roblero, M. E. (1999). Analisis de los problemas comunitarios de Naha. Chiapas: Municipio de Ocosingo.Google Scholar
  15. Cook, S. (2016). The Forest of the Lacandon Maya. New York: Springer.CrossRefGoogle Scholar
  16. Cowgill, U. M. (1960). Soil fertility and the ancient Maya. In Transactions of the Connecticut academy of arts and sciences (pp. 1009–1011). New Haven, Connecticut: Connecticut Academy of Arts and Sciences.Google Scholar
  17. Cowgill, U. M. (1961). Soil fertility and the ancient Maya (In Transactions of the connecticut academy of arts and sciences 42). New Haven: Connecticut.Google Scholar
  18. Cowgill, U. M. (1962). An agricultural study of the southern Maya lowlands. American Anthropologist, 64(2), 273–286.CrossRefGoogle Scholar
  19. de Frece, A., & Poole, N. (2008). Constructing livelihoods in rural Mexico: Milpa in Mayan culture. Journal of Peasant Studies, 35(2), 335–352.  https://doi.org/10.1080/03066150802151090.CrossRefGoogle Scholar
  20. De Jong, B. H. J., Ochoa-Gaona, S., Castillo-Santiago, M. A., Ramírez-Marcial, N., & Cairns, M. A. (2000). Carbon flux and patterns of land-use/ land-cover change in the Selva Lacandona, Mexico. Ambio: A Journal of the Human Environment, 29(8), 504–511.  https://doi.org/10.1579/0044-7447-29.8.504.CrossRefGoogle Scholar
  21. Diemont, S. A. W. (2006). Ecosystem management and restoration as practiced by the indigenous Lacandon Maya of Chiapas. Mexico: Ohio State University.Google Scholar
  22. Diemont, S. A. W., & Martin, J. F. (2005). Management impacts on the trophic diversity of nematode communities in an indigenous agroforestry system of Chiapas, Mexico. Pedobiologia, 49(4), 325–334.  https://doi.org/10.1016/j.pedobi.2005.02.003.CrossRefGoogle Scholar
  23. Diemont, S. A. W., & Martin, J. F. (2009). Lacandon Maya ecosystem management: Sustainable design for subsistence and environmental restoration. Ecological Applications, 19(1), 254–266.  https://doi.org/10.1890/08-0176.1.CrossRefGoogle Scholar
  24. Diemont, S. A. W., Martin, J. F., & Levy-Tacher, S. I. (2005). Emergy evaluation of Lacandon Maya indigenous Swidden agroforestry in Chiapas, Mexico. Agroforestry Systems, 66(1), 23–42.  https://doi.org/10.1007/s10457-005-6073-2.CrossRefGoogle Scholar
  25. Diemont, S. A. W., Bohn, J. L., Rayome, D. D., Kelsen, S. J., & Cheng, K. (2011). Comparisons of Mayan forest management, restoration, and conservation. Forest Ecology and Management, 261(10), 1696–1705.  https://doi.org/10.1016/j.foreco.2010.11.006.CrossRefGoogle Scholar
  26. Duffy, M. (2009). Economies of size in production agriculture. Journal of Hunger and Environmental Nutrition, 4(3–4), 375–392.  https://doi.org/10.1080/19320240903321292.CrossRefGoogle Scholar
  27. Falkowski, T. B., Martinez-Bautista, I., & Diemont, S. A. W. (2015). How valuable could traditional ecological knowledge education be for a resource-limited future?: An emergy evaluation in two Mexican villages. Ecological Modelling, 300, 40–49.  https://doi.org/10.1016/j.ecolmodel.2014.12.007.CrossRefGoogle Scholar
  28. Falkowski, T. B., Diemont, S. A. W., Chankin, A., & Douterlungne, D. (2016). Lacandon Maya traditional ecological knowledge and rainforest restoration: Soil fertility beneath six agroforestry system trees. Ecological Engineering, 92, 210–217.  https://doi.org/10.1016/j.ecoleng.2016.03.002.CrossRefGoogle Scholar
  29. Ford, A., & Nigh, R. (2009). Origins of the Maya Forest garden : Maya resource management. Journal of Ethnobiology, 29(2), 213–236.CrossRefGoogle Scholar
  30. Ford, A., & Nigh, R. (2016). The Maya Forest garden: Eight millennia of sustainable cultivation of the tropical woodlands.Google Scholar
  31. Giraldo, O. F. (2018). Ecología política de la agricultura. Agroecología y posdesarrollo. El Colegio de la Frontera Sur., 46, 283–287.  https://doi.org/10.1093/cdj/bsr031.Google Scholar
  32. Haldimann, M., Alt, A., Blanc, A., & Blondeau, K. (2005). Iodine content of food groups. Journal of Food Composition and Analysis, 18(6), 461–471.  https://doi.org/10.1016/j.jfca.2004.06.003.CrossRefGoogle Scholar
  33. Homer-Dixon, T. (1996). Environmental scarcity and violent conflict: The case of Chiapas, Mexico. Washington D.C.Google Scholar
  34. INEGI. (1990). Resultados preliminares del XI Censo General de Población y Vivienda, 1990.Google Scholar
  35. Juarez, B., & Gonzalez, C. (2010). Food security and nutrition in Mexico.Google Scholar
  36. Kashanipour, R. A., & McGee, R. J. (2004). Northern Lacandon Maya medicinal plant use in the communities of Lacanja Chan Sayab and Naha’, Chiapas, Mexico. Journal of Applied Anthropology, 8, 47–66.Google Scholar
  37. Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science, 319(5863), 607–610.  https://doi.org/10.1126/science.1152339.CrossRefGoogle Scholar
  38. McGee, R. J. (2002). Watching Lacandon Maya lives. Boston: Allyn and Bacon.Google Scholar
  39. Naranjo, E. J., Guerra, M. M., Bodmer, R. E., & Bolanos, J. E. (2004). Subsistence hunting by three ethnic groups of the Lacandon Forest, Mexico. Journal of Ethnography, 24(2), 233–253.Google Scholar
  40. Nations, J. D. (1979). Population ecology of the Lacandon Maya. Southern Methodist University.Google Scholar
  41. Nations, J. D., & Nigh, R. B. (1980). The evolutionary potential of Lacandon Maya sustained-yield tropical forest agriculture. Journal of Anthropological Research, 36(1), 1–30.CrossRefGoogle Scholar
  42. Nigh, R., & Diemont, S. A. W. (2013). The Maya milpa: Fire and the legacy of living soil. Frontiers in Ecology and the Environment, 11, E45–E54.CrossRefGoogle Scholar
  43. Nyéléni. (2007). Forum on food sovereignty. Mali: Sélingué.Google Scholar
  44. Palka, J. W. (2005). Unconquered Lacandon Maya: Ethnohistory and archaeology of indigenous culture change (1st ed.). Gainesville, FL: University Press of Florida.Google Scholar
  45. Pappa, M. R., de Palomo, P. P., & Bressani, R. (2010). Effect of lime and wood ash on the nixtamalization of maize and tortilla chemical and nutritional characteristics. Plant Foods for Human Nutrition, 65(2), 130–135.  https://doi.org/10.1007/s11130-010-0162-8.CrossRefGoogle Scholar
  46. Paulino, E. T. (2014). The agricultural, environmental and socio-political repercussions of Brazil’s land governance system. Land Use Policy, 36, 134–144.  https://doi.org/10.1016/j.landusepol.2013.07.009.CrossRefGoogle Scholar
  47. Perfecto, I., & Vandermeer, J. (2008). Biodiversity conservation in tropical agroecosystems: A new conservation paradigm. Annals of the New York Academy of Sciences, 1134, 173–200.  https://doi.org/10.1196/annals.1439.011.CrossRefGoogle Scholar
  48. Phalan, B., Balmford, A., Green, R. E., & Scharlemann, J. P. W. (2011). Minimising the harm to biodiversity of producing more food globally. Food Policy, 36(SUPPL. 1), S62–S71.  https://doi.org/10.1016/j.foodpol.2010.11.008.CrossRefGoogle Scholar
  49. Pinstrup-Andersen, P. (2009). Food security: Definition and measurement. Food Security, 1(1), 5–7.  https://doi.org/10.1007/s12571-008-0002-y.CrossRefGoogle Scholar
  50. Plants for a Future. (2012). Plants for a future plant database. www.pfaf.org/user/plantsearch.aspx. Accessed 11 Nov 2016.
  51. Poole, N., Gauthier, R., & Mizrahi, A. (2007). Rural poverty in Mexico: Assets and livelihood strategies among the Mayas of Yucatan. International Journal of Agricultural Sustainability, 5(4), 315–330.CrossRefGoogle Scholar
  52. R Development Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  53. Redfield, R., & Villa Rojas, A. (1962). Chan Kom, A Maya Village. Chicago: University of Chicago Press.Google Scholar
  54. Rosado, J. L., Bourges, H., & Saint-Martin, B. (1995). Vitamin and mineral deficiency in Mexico. Salud publica de Mexico, 37(2), 130–139.Google Scholar
  55. Ross, N. (2002). Cognitive aspects of intergenerational change: Mental models, cultural change, and environmental behavior among the Lacandon Maya of southern Mexico. Human Organization, 61(2), 125–138.CrossRefGoogle Scholar
  56. Rubio, J. E., & Ordóñez, J. (2008). Ciencia. Tecnológico de Monterrey: Tecnología y Sociedad en México.Google Scholar
  57. Sanchez-Perez, H. J., Hernan, M. A., Rios-Gonzalez, A., Arana-Cedeno, M., Navarro, A., Ford, D., & Brentlinger, P. (2007). Malnutrition among children younger than 5 years-old in conflict zones of Chiapas, Mexico. American Journal of Public Health, 97(2), 229–232.CrossRefPubMedCentralGoogle Scholar
  58. Schwartz, N. B. (2015). Swidden counts: A Peten, Guatemale, Milpa system: Production, carrying capacity, and sustainability in the southern Maya lowlands. Journal of Anthropological Research, 71, 69–93.CrossRefGoogle Scholar
  59. Servicio Meterologico Nacional. (2010). Normales Climatologicas Estacion 00007017 Bonampak.Google Scholar
  60. Tacher, S. I. L., & Golicher, J. D. (2004). How predictive is traditional ecological knowledge? The case of the lacandon maya fallow enrichment system. Interciencia, 29(9).Google Scholar
  61. Teran, S., & Rasmussen, C. H. (1994). La Milpa en Mesoamerica. In La Milpa de los Mayas (p. 124). Merida, Yucatan, Mexico: Talleres Graficos.Google Scholar
  62. Teran, S., & Rasmussen, C. H. (2009). La Milpa de los Mayas: La Agricultura de los Mayas Prehispanicas y Actuales en el Noreste de Yucatan. Merida, Yucatan, Mexico: Universidad Nacional Autonoma de Mexico.Google Scholar
  63. Tittonell, P., & Giller, K. E. (2013). When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crops Research, 143, 76–90.  https://doi.org/10.1016/j.fcr.2012.10.007.CrossRefGoogle Scholar
  64. Toledo, V. M., & Barrera-Bassols, N. (2009). A etnoecologia: Uma ciência pós-Normal que estuda as sabedorias tradicionais Ethnoecology: A post-Normal science studying the traditional knowledge and wisdom. Desenvolvimento e Meio Ambiente, 20, 31–45.CrossRefGoogle Scholar
  65. U.S. Department of Health and Human Services. (2013). A food labeling guide. MD: College Park www.fda.gov/FoodLabelingGuide. Accessed 28 Nov 2017.
  66. United States Department of Agriculture. (2016). USDA food composition databases. https://ndb.nal.usda.gov/ndb/. Accessed 11 Nov 2016.
  67. United States Food & Drug Administration (n.d.). Guidance for industry: A food labeling guide (14. Appendix F: Calculate the Percent Daily Value for the Appropriate Nutrients). http://www.ecfr.gov/cgi-bin/text-idx?SID=10896471be7fb6ff7aae0acf00081a82&mc=true&node=pt21.2.101&rgn=div5#se21.2.101_19. Accessed 28 Nov 2017.
  68. Van Ittersum, M. K., Cassman, K. G., Grassini, P., Wolf, J., Tittonell, P., & Hochman, Z. (2013). Yield gap analysis with local to global relevance-a review. Field Crops Research, 143, 4–17.  https://doi.org/10.1016/j.fcr.2012.09.009.CrossRefGoogle Scholar
  69. Villa Rojas, A. (1945). The Maya of east Central Quintana Roo. Washington, D.C.: Carnegie Institution.Google Scholar
  70. Weinberg, B. (2002). Homage to Chiapas. Verso.Google Scholar
  71. Wright, L. E. (2006). Diet, health, and status among the Pasion Maya: A reappraisal of the collapse. Vanderbilt University Press.Google Scholar

Copyright information

© International Society for Plant Pathology and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Integrative Plant ScienceCornell UniversityIthacaUSA
  2. 2.Lacanja ChansayabChiapasMexico
  3. 3.Department of Environmental and Forest BiologyState University of New York College of Environmental Science and ForestrySyracuseUSA

Personalised recommendations