Food Security

, Volume 10, Issue 6, pp 1539–1545 | Cite as

Aflatoxin content in cereal-legume blends on the Ghanaian market far exceeds the permissible limit

  • Nelson Opoku
  • Matthew Atongbiik Achaglinkame
  • Francis Kweku AmaglohEmail author
Original Paper


Cereals and legumes, the main ingredients used in the preparation of complementary foods in Ghana, have been associated with aflatoxin contamination. This study aimed to determine aflatoxin contamination levels in cereal-based complementary foods on the Ghanaian market. A cross-sectional survey design over a two-week period was used to sample 48 commercial complementary food brands on an as available-basis from supermarkets or mini-marts in all 10 regions of Ghana. A tablet-assisted aflatoxin mobile Assay (mReader) that uses Reveal Q+ test strips (Neogen Corporation) was used to quantify the level of aflatoxin in the samples. All samples were contaminated with aflatoxin. Concentrations in cereal-legume blends ranged from 1 to 1094 ppb while those in cereal-only samples ranged from 1 to 11.7 ppb. The lowest aflatoxin concentrations were recorded in samples from the Upper East region with a mean of 1.5 ppb (1 to 3.8 ppb) while the highest were in samples from the Central region with a mean concentration of 457 ppb (6.6–1094 ppb). Aflatoxin concentrations in approximately a third of the infant formulations sampled exceeded the acceptable standard of 20 ppb, some by a factor of over 5 (100 ppb), and may contribute to the perennial malnutrition (stunting and iron deficiency) prevalent among children in Ghana.


Cereal-legume blends Aflatoxin Child health 



The authors wish to acknowledge IFPRI for the provision of equipment for aflatoxin tests. Author Francis Kweku Amagloh (PhD) provided money for the purchase of the samples in all 10 regions of the study.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Human or animal studies

This article does not contain any studies with human or animal subjects.


  1. Africa Nutrition Chartbooks (2005). Nutrition of young children and mothers in Ghana: Findings from the 2003 Ghana Demographic and Health Survey. (pp. 1–91). Calverton, Maryland, USA: ORC Macro,Calverton, Maryland, USA.Google Scholar
  2. Aheto, J. M. K., Keegan, T. J., Taylor, B. M., & Diggle, P. J. (2015). Childhood malnutrition and its determinants among under-five children in Ghana. Paediatric and Perinatal Epidemiology, 29(6), 552–561. Scholar
  3. Amissah, O. B., Ayim, R. K., Biney, E., & Delu, J. K. (2017). Relationship between groundnut (Arachis hypogea L.) pricing and variety on aflatoxin levels in Ghana. BSc, University for Development Studies, Ghana,Google Scholar
  4. Awuah, R. T., & Kpodo, K. A. (1996). High incidence of aspergillus flavus and aflatoxins in stored groundnuts in Ghana and the use of microbial assay to assess the inhibitory effects of plant extracts on aflatoxin synthesis. Mycopathologia, 134, 109–114.CrossRefGoogle Scholar
  5. Bandyopadhyay, R., Kumar, M., & Leslie, J. F. (2007). Relative severity of aflatoxin contamination of cereal crops in West Africa. Food Additives and Contaminants, 24, 1109–1114.CrossRefGoogle Scholar
  6. Castelino, J. M., Routledge, M. N., Wilson, S., Dunne, D. W., Mwatha, J. K., Gachuhi, K., Wild, C. P., & Gong, Y. Y. (2015). Aflatoxin exposure is inversely associated with IGF1 and IGFBP3 levels in vitro and in Kenyan schoolchildren. Molecular Nutrition and Food Research, 59(3), 574–581. Scholar
  7. Covic, N., & Hendriks, S. L. (2016). Achieving a nutrition revolution for Africa: The road to healthier diets and optimal nutrition. ReSAKSS Annual Trends and Outlook Report 2015. International Food Policy Research Institute (IFPRI),
  8. Doehlert, D. C., Wicklow, D. T., & Gardner, H. W. (1993). Evidence implicating the lipoxygenase pathway in providing resistance to soybeans against Aspergillus flavus. Phytopathology, 83, 1473–1477.CrossRefGoogle Scholar
  9. Egal, S., Hounsa, A., Gong, Y. Y., Turner, P. C., Wild, C. P., Hall, A. J., Hell, K., & Cardwell, K. F. (2005). Dietary exposure to aflatoxin from maize and groundnut in young children from Benin and Togo, West Africa. International Journal of Food Microbiology, 104(2), 215–224. Scholar
  10. Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, I., Lawrence, D., Muir, J. F., et al. (2010). Food security: The challenge of feeding 9 billion people. Science, 327, 812–818. CrossRefGoogle Scholar
  11. Gong, Y., Egal, S., Hounsa, A., Turner, P., Hall, A., Cardwell, K., & Wild, C. P. (2003). Determinants of aflatoxin exposure in young children from Benin and Togo, West Africa: The critical role of weaning. International Journal of Epidemiology, 32(4), 556–562. Scholar
  12. Gong, Y., Hounsa, A., Egal, S., Turner, P. C., Sutcliffe, A. E., Hall, A. J., Cardwell, K., & Wild, C. P. (2004). Postweaning exposure to aflatoxin results in impaired child growth: A longitudinal study in Benin, West Africa. Environmental Health Perspectives, 112(13), 1334–1338. Scholar
  13. Gong, Y. Y., Cardwell, K., Hounsa, A., Egal, S., Turner, P. C., Hall, A. J., & Wild, C. P. (2002). Dietary aflatoxin exposure and impaired growth in young children from Benin and Togo: Cross sectional study. British Medical Journal, 325, 20–21.CrossRefGoogle Scholar
  14. Gong, Y. Y., Turner, P. C., Hall, A. J., & Wild, C. P. (2008). Aflatoxin exposure and impaired child growth in West Africa: An unexplored international public health burden? , 53–66.Google Scholar
  15. Gong, Y. Y., Watson, S., & Routledge, M. N. (2016). Aflatoxin exposure and associated human health effects, a review of epidemiological studies. Food Safety, 4(1), 14–27. Scholar
  16. Huffman, S. L., & Schofield, D. (2011). Consequences of malnutrition in early life and strategies to improve maternal and child diets through targeted fortified products. Maternal & Child Nutrition, 7, 1–4. Scholar
  17. Kiarie, G. M., Dominguez-Salas, P., Kang’ethe, S. K., Grace, D., & Lindahl, J. (2016). Aflatoxin exposure among young children in urban low-income areas of Nairobi and association with child growth. African Journal of Food, Agriculture, Nutrition and Development, 16(3), 10967–10990. Scholar
  18. Kumar, P., Mahato, D. K., Kamle, M., Mohanta, T. K., & Kang, S. G. (2017). Aflatoxins: A global concern for food safety, human health and their management. Frontiers in Microbiology, 7, 1–10. Scholar
  19. Kumi, J., Dotse, E., Asare, G. A., & Ankrah, N.-A. (2015). Urinary aflatoxin M1 exposure in Ghanaian children weaned on locally prepared nutritional food. African Journal of Science and Research, 4(6), 28–32.Google Scholar
  20. Lombard, M. J. (2014). Mycotoxin exposure and infant and young child growth in Africa: What do we know? Annals of Nutrition and Metabolism, 64, 42–52. Scholar
  21. Obuseh, F. A., Jolly, P. E., Jiang, Y. E., Shuaib, F. M. B., Waterbor, J., Ellis, W. O., et al. (2010). Aflatoxin B1 albumin adducts in plasma and aflatoxin M1 in urine are associated with plasma concentrations of vitamins a and E. International Journal for Vitamin and Nutrition Research, 80, 355–368.CrossRefGoogle Scholar
  22. Okoth, S. A., & Ohingo, M. (2004). Dietary aflatoxin exposure and impaired growth in young children from Kisumu District, Kenya: Cross sectional study. African Journal of Health Sciences, 11, 43–54.PubMedGoogle Scholar
  23. Shephard, G. S. (2008). Impact ofmycotoxins on human health in developing countries. Food Additives and Contaminants, 25(2), 146–151. Scholar
  24. Shuaib, F. M. B., Jolly, P. E., Ehiri, J. E., Jiang, Y., Ellis, W. O., Stiles, J. K., et al. (2010). Association between anemia and aflatoxin B1 biomarker levels among pregnant women in Kumasi. Ghana. American Journal of Tropical Medicine and Hygiene, 83(5), 1077–1083. CrossRefPubMedGoogle Scholar
  25. Sirma, A., Senerwa, D., Grace, D., Makita, K., Mtimet, N., Kang’ethe, E., et al. (2016). Aflatoxin B1 occurrence in millet, sorghum and maize from four agro-ecological zones in Kenya. African Journal of Food, Agriculture, Nutrition & Development, 16(3), 10991–11003.CrossRefGoogle Scholar
  26. Soro-Yao, A. A., Brou, K., Amani, G., Thonart, P., & Djè, K. M. (2014). The use of lactic acid Bacteria starter cultures during the processing of fermented cereal-based foods in West Africa: A review. Tropical Life Sciences Research, 25(2), 81–100.PubMedPubMedCentralGoogle Scholar
  27. Stossel, P. (1986). Aflatoxin contamination in soybeans: Role of proteinase inhibitors, zinc availability. and seed coat integrity. Applied and Environmental Microbiology, 5(1), 68–72.Google Scholar
  28. Temba, M. C., Njobeh, P. B., & Kayitesi, E. (2016). Storage stability of maize-groundnut composite flours and an assessment of aflatoxin B1 and ochratoxin a contamination in flours and porridges. Food Control, 71, 178–186. Scholar
  29. UNICEF, WHO, & Bank, W. (2012). Joint child malnutrition estimates - levels and trends. Geneva: World Health Organization.Google Scholar
  30. Wagacha, J. M., & Muthomi, J. W. (2008). Mycotoxin problem in Africa: Current status, implications to food safety and health and possible management strategies. International Journal of Food Microbiology, 124(1), 1–12. Scholar
  31. Watson, S., Chen, G., Sylla, A., Routledge, M. N., & Gong, Y. Y. (2015). Dietary exposure to aflatoxin and micronutrient status among young children from Guinea. Molecular Nutrition & Food Research, 60, 511–518. Scholar
  32. WHO & UNICEF (2008). Strengthening action to improve feeding of infants and young children 6-23 months of age in nutrition and child health programmes: Report of proceedings (W. Department of Child and Adolescent Health and development, W. Department of Nutrition for health and development, & U. nutrition section, trans.). Geneva, Switzerland: WHO.Google Scholar

Copyright information

© Springer Nature B.V. and International Society for Plant Pathology 2018

Authors and Affiliations

  1. 1.Department of Agricultural BiotechnologyUniversity for Development StudiesTamaleGhana
  2. 2.Department of Food Science and TechnologyUniversity for Development StudiesTamaleGhana

Personalised recommendations