Food Security

, Volume 10, Issue 3, pp 505–524 | Cite as

Converting ‘trade-offs’ to ‘trade-ons’ for greatly enhanced food security in Africa: multiple environmental, economic and social benefits from ‘socially modified crops’

  • Roger R. B. LeakeyEmail author


To address the issues of food insecurity within the context of land degradation, extreme poverty and social deprivation, this review seeks first to understand the main constraints to food production on smallholder farms in Africa. It then proposes a highly-adaptable, yet generic, 3-step solution aimed at reversing the downward spiral which traps subsistence farmers in hunger and poverty. This has been found to be effective in greatly increasing the yields of staple food crops and reducing the ‘yield gap’. This solution includes the restoration of soil fertility and ecological functions, as well as the cultivation, domestication and commercialization of traditionally-important, highly nutritious, indigenous food products for income generation and business development. A participatory approach involving capacity building at the community-level, leads to the development of ‘socially modified crops’ which deliver multiple environmental, social and economic benefits, suggesting that increased agricultural production does not have to be detrimental to biodiversity, to agroecological function, and/or to climate change. These are outcomes unattainable by attempting to raise crop yields using conventional crop breeding or genetic modification. Likewise, the livelihoods of smallholder farmers can be released from the constraints creating spatial trade-offs between subsistence agriculture and (i) international policies and (ii) globalized trade.


Agroecology Agroforestry Domestication Income generation Land restoration Multifunctionality Socially modified crops 


Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.


  1. Abbiw, D. (1990). Useful Plants of Ghana (p. 337). London and Royal Botanic Gardens, Kew: Intermediate Technology Publications.Google Scholar
  2. Asaah, E. K., Tchoundjeu, Z., Leakey, R. R. B., et al. (2011). Trees, agroforestry and multifunctional agriculture in Cameroon. International Journal of Agricultural Sustainability, 9, 110–119.CrossRefGoogle Scholar
  3. Atta-Krah, K., Kindt, R., Skilton, J. N., et al. (2004). Managing biological and genetic diversity in tropical agroforestry. Agroforestry Systems, 61, 183–194.CrossRefGoogle Scholar
  4. Badgley, C., Moghtader, J., Quintero, E., et al. (2006). Organic agriculture and the global food supply. Renewable Agriculture and Food Systems, 22, 86–108.CrossRefGoogle Scholar
  5. Bailey, I., & Buck, L. E. (2016). Managing for resilience: a landscape framework for food and livelihood security and ecosystem services. Food Security, 8, 477–490.CrossRefGoogle Scholar
  6. Baxter, J. (2017). Seven Grains of Paradise: A Culinary Journey in Africa (p. 285). Nova Scotia: Pottersfield Press.Google Scholar
  7. Bennett, E. M., Cramer, W., Begossi, A., et al. (2015). Linking biodiversity, ecosystem services and human wellbeing: three challenges for designing research for sustainability. Current Opinion in Environmental Sustainability, 14, 76–85.CrossRefGoogle Scholar
  8. Borlaug, N. (1970). Speech at investiture as Nobel Peace Laureate. Oslo: The Nobel Foundation.Google Scholar
  9. Comprehensive Assessment of Water Management in Agriculture. (2007). In Molden, D. (Ed.), Water for Food: Water for Life (p. 645). London: Earthscan.Google Scholar
  10. Cribb, J. (2010). The Coming Famine: The Global Food Crisis and What We Can Do To Avoid It (p. 248). Los Angeles: University of California Press.Google Scholar
  11. Cunningham, A. B. (2001). Applied Ethnobotany: People, Wild Plant Use and Conservation (p. 300). London: Earthscan.Google Scholar
  12. de la Mora, A., Livingston, G., & Philpott, S. M. (2008). Arboreal ant abundance and leaf miner damage in coffee agroecosystems in Mexico. Biotropica, 40, 742–746.CrossRefGoogle Scholar
  13. de Smedt, S., Alaerts, K., Kouyaté, A. M., et al. (2011). Phenotypic variation of baobab (Adansonia digitata L.) fruit traits in Mali. Agroforestry Systems, 83, 87–97.CrossRefGoogle Scholar
  14. Degrande, A., Franzel, S., Yeptiep, Y. S., et al. (2012). Effectiveness of grassroots organisations in the dissemination of agroforestry innovations. In M. L. Kaonga (Ed.), Agroforestry for Biodiversity and Ecosystem Services Science and Practice (pp. 141–164). London: Elsevier.Google Scholar
  15. Degrande, A., Siohdjie Yeptiep, Y., Franzel, S., et al. (2014). Disseminating agroforestry innovations in Cameroon: are relay organisations effective? In B. Van Lauwe, P. Van Asten, & G. Blomme (Eds.), Agro-ecological Intensification of Agricultural Systems in the African Highlands (pp. 221–230). New York: Routledge.Google Scholar
  16. Degrande, A., Tchoundjeu, Z., Kwidja, A., et al. (2015). Rural Resource Centres: A Community Approach to Extension. Note 10. In: GFRAS Good Practice Notes for Extension and Advisory Services. GFRAS: Lindau.Google Scholar
  17. Deininger, K., & Castagnini, R. (2006). Incidence and impact of land conflict in Uganda. Journal of Economic Behavior and Organization., 60, 321–345.CrossRefGoogle Scholar
  18. Diofasi, A., & Birdsall, N. (2016). The World Bank’s Poverty Statistics Lack Median Income Data, So We Filled in the Gap Ourselves. Centre for Global Development, Blog and Dataset.Google Scholar
  19. Estrada-Carmona, N., Hart, A. K., DeClerck, F. A. J., et al. (2014). Integrated landscape management for agriculture, rural livelihoods and ecosystem conservation: an assessment of experience from Latin America and the Caribbean. Landscape and Urban Planning, 129, 1–11.CrossRefGoogle Scholar
  20. Everson, R. E., & Gollin, D. (2003). Assessing the impact of the Green Revolution 1960-2000. Science, 300(5620), 758–762.CrossRefGoogle Scholar
  21. FAO. (1995). Minimizing the trade-offs between the environment and agricultural development. In N. Alexandratos (Ed.), World Agriculture: Towards 2010. An FAO Study (p. 12). Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  22. Foundjem-Tita, D., Tchoundjeu, Z., Speelman, S., et al. (2012). Policy and legal frameworks governing trees: incentives or disincentives for smallholder tree planting decisions in Cameroon? Small-scale Forestry, 12, 489–505.CrossRefGoogle Scholar
  23. Franzel, S., Akinnifesi, F. K., & Ham, C. (2008). Setting priorities among indigenous fruit tree species in Africa: examples from southern, eastern and western Africa regions. In F. K. Akinnifesi, R. R. B. Leakey, O. C. Ajayi, et al. (Eds.), Indigenous Fruit Trees in the Tropics: Domestication (pp. 1–27). Wallingford: Utilization and Commercialization. CAB International.Google Scholar
  24. Franzel, S., Degrande, A., Kiptot, E., et al. (2015). Farmer-to-Farmer Extension. Note 7, GFRAS Good Practice Note for Extension and Advisory Services. Lindau: Global Forum for Rural Advisory Services.Google Scholar
  25. Franzel, S., Denning, G. L., Lilisøe, J.-P., & Mercado Jr., A. R. (2004). Scaling up the impact of agroforestry: Lessons from three sites in Africa and Asia. Agroforestry Systems, 61, 329–344.CrossRefGoogle Scholar
  26. Franzel, S., Jaenicke, H., & Janssen, W. (1996). Choosing the Right Trees: Setting Priorities for Multipurpose Tree Improvement. ISNAR Research Report 8. International Service for National Agricultural Research, The Hague, p 87.Google Scholar
  27. Gallina, S., Mandujano, S., & Gonzalez-Romero, A. (1996). Conservation of mammalian biodiversity in coffee plantations of Central Veracruz, Mexico. Agroforestry Systems, 33, 13–27.CrossRefGoogle Scholar
  28. Gallup (2014). Worldwide median income. Gallup Worldwide Research Data 2005–2016, Gallup Inc.Google Scholar
  29. Garbach, K., Milder, J. C., Montenegro, M., et al. (2014). Biodiversity and ecosystem services in agroecosystems. In N. van Alfen et al. (Eds.), Encyclopedia of Agriculture and Food Systems (Vol. 2, pp. 21–40). San Diego: Elsevier Publishers.CrossRefGoogle Scholar
  30. Garnett, T., Appleby, M. C., Balmford, A., et al. (2013). Sustainable intensification in agriculture: premises and policies. Science, 341, 33–34.PubMedCrossRefGoogle Scholar
  31. Garrity, D. P., Akinnifesi, F. K., Ajayi, O. C., Sileshi, W. G., Mowo, J. G., Kalinganire, A., Larwanou, M., & Bayala, J. (2010). Evergreen Agriculture: a robust approach to sustainable food security in Africa. Food Security, 2, 197–214.CrossRefGoogle Scholar
  32. Gemmell, N., Lloyd, T., & Mathew, M. (2000). Agricultural growth and intersectoral linkages in a developing economy. Journal of Agricultural Economics, 51(3), 353–370.CrossRefGoogle Scholar
  33. Global Environmental Outlook. (2007). Global Environmental Outlook 4: Past, Present and Future Perspectives (p. 572). Nairobi: UNEP.Google Scholar
  34. Godfray, H. C. J., & Garnett, T. (2014). Food security and sustainable intensification. Philosophical Transactions of the Royal Society B, 369, 20120273. Scholar
  35. Greenberg, R. (2000). The conservation value for birds of planted shade cacao plantations in Mexico. Animal Conservation, 3, 105–112.CrossRefGoogle Scholar
  36. Greenberg, R., Bichier, R., & Sterling, J. (1997). Bird populations in rustic and planted shade coffee plantations of Eastern Chiapas, Mexico. Biotropica, 29, 501–514.CrossRefGoogle Scholar
  37. Gu, H., & Subramanian, S. M. (2012). Socio-ecological production landscapes: Relevance to the Green Economy Agenda. UN University, Institute of Advanced Studies Policy Report.Google Scholar
  38. Gyau, A., Ngum Faith, A., Foundjem-Tita, D., et al. (2014). Small-holder farmers’ access and rights to land of Njombe´ in the Littoral region of Cameroon. Afrika Focus, 27, 23–39.Google Scholar
  39. Holt-Giménez, E., & Altieri, M. A. (2013). Agroecology, food sovereignty and the new Green Revolution. Agroecology and Sustainable Food Systems, 37, 90–102.CrossRefGoogle Scholar
  40. International Assessment of Agricultural Science and Technology for Development. (2009). In B. D. McIntyre, H. R. Herren, J. Wakhungu, R. T. Watson (Eds.), Agriculture at a crossroads: International assessment of agricultural science and technology for development global report (p. 590). Washington, DC: Island Press.Google Scholar
  41. Jama, B., Kimani, D., Harawa, R., et al. (2017). Maize yield response, nitrogen use efficiency and financial returns on smallholder farms in southern Africa. Food Security, 9, 577–593.CrossRefGoogle Scholar
  42. Jamnadass, R., Dawson, I. K., Anegbeh, P., et al. (2010). Allanblackia, a new tree crop in Africa for the global food industry: market development, smallholder cultivation and biodiversity management. Forests Trees Livelihoods, 19, 251–268.CrossRefGoogle Scholar
  43. Jamnadass, R., Langford, K., Anjarwalla, P., et al. (2014). Public-Private partnerships in agroforestry. In N. van Alfen (Ed.), Encyclopedia of Agriculture and Food Systems (Vol. 4, pp. 544–564). San Diego: Elsevier.CrossRefGoogle Scholar
  44. Kangmennaeng, J., Kerr, R. B., Lupafya, E., et al. (2017). Impact of participatory agroecological development programme on household wealth and food security in Malawi. Food Security, 9, 561–576.CrossRefGoogle Scholar
  45. Keding, G. B., Kehlenbeck, K., Kennedy, G., et al. (2017). Fruit production and consumption: practices, preferences and attitudes of women in western rural Kenya. Food Security, 9, 453–469.CrossRefGoogle Scholar
  46. Khan, Z. R., Midega, C. A. O., Hassanali, A., et al. (2006). Management of witchweed, Striga hermonthica, and stemborers in sorghum, Sorghum bicolor, through intercropping with greenleaf desmodium, Desmodium intortum. International Journal of Pest Management, 52, 297–302.CrossRefGoogle Scholar
  47. Kiers, E. T., Leakey, R. R. B., Izac, A.-M., et al. (2008). Agriculture at a crossroads. Science, 320, 320–321.PubMedCrossRefGoogle Scholar
  48. Kiptot, E., & Franzel, S. (2015). Farmer-to-farmer extension: opportunities for enhancing performance of volunteer farmer trainers in Kenya. Development Practitioner, 25, 503–517.CrossRefGoogle Scholar
  49. Klapwijk, C. J., van Wijk, M. T., Rosenstock, T. S., et al. (2016). Analysis of trade-offs in agricultural systems: current status and way forward. Current Opinion in Environmental Sustainability, 6, 110–115.CrossRefGoogle Scholar
  50. Lavelle, P., Moreira, F., & Spain, A. (2014). Biodiversity: Conserving biodiversity in agroecosystems. In N. van Alfen et al. (Eds.), Encyclopedia of Agriculture and Food Systems (Vol. 2, pp. 41–60). San Diego: Elsevier Publishers.CrossRefGoogle Scholar
  51. Le Mare, A. (2008). The impact of Fair Trade on social and economic development: a review of the literature. Geography Compass, 2, 1922–1942.CrossRefGoogle Scholar
  52. Leakey, R. R. B. (1999). Potential for novel food products from agroforestry trees. Food Chemistry, 64, 1–14.CrossRefGoogle Scholar
  53. Leakey, R. R. B. (2001a). Win:Win landuse strategies for Africa: 1. Building on experience with agroforests in Asia and Latin America. International Forestry Review, 3, 1–10.Google Scholar
  54. Leakey, R. R. B. (2001b). Win:Win landuse strategies for Africa: 2. capturing economic and environmental benefits with multistrata agroforests. International Forestry Review, 3, 11–18.Google Scholar
  55. Leakey, R. R. B. (2010). Agroforestry: a delivery mechanism for multi-functional agriculture. In L. R. Kellimore (Ed.), Handbook on agroforestry: Management practices and environmental impact. Environmental science, engineering and technology series (pp. 461–471). New York: Nova Science Publishers.Google Scholar
  56. Leakey, R. R. B. (2012a). Living with the Trees of Life–Towards the Transformation of Tropical Agriculture (p. 200). Wallingford: CABI.CrossRefGoogle Scholar
  57. Leakey, R. R. B. (2012b). Non-Timber Forest Products – a misnomer? Guest Editorial. Journal of Tropical Forest Science, 24, 145–146.Google Scholar
  58. Leakey, R. R. B. (2013). Addressing the causes of land degradation, food/nutritional insecurity and poverty: A new approach to agricultural intensification in the tropics and sub-tropics. In U. Hoffman (Ed.), UNCTAD Trade and Environment Review 2012. Geneva: UNCTAD.Google Scholar
  59. Leakey, R. R. B. (2014a). The role of trees in agroecology and sustainable agriculture in the tropics. Annual Review of Phytopathology, 52, 113–133.PubMedCrossRefGoogle Scholar
  60. Leakey, R. R. B. (2014b). Twelve principles for better food and more food from mature perennial agroecosystems. In: Perennial Crops for Food Security, 282–306, Proceedings of FAO Expert Workshop, Rome, Italy, 28–30 August 2013. Rome: FAO.Google Scholar
  61. Leakey, R. R. B. (2014c). Agroforestry: Participatory Domestication of Trees. In N. van Alfen (Ed.), Encyclopedia of Agriculture and Food Systems (Vol. 1, pp. 253–269). San Diego: Elsevier.CrossRefGoogle Scholar
  62. Leakey, R. R. B. (2014d). Plant cloning: Macro-propagation. In N. van Alfen (Ed.), Encyclopedia of Agriculture and Food Systems (Vol. 4, pp. 349–359). San Diego: Elsevier Publishers.CrossRefGoogle Scholar
  63. Leakey, R. R. B. (2014e). An African solution to the problems of African agriculture. In Sustainable Natural Resources Management in Africa’s Urban Food and Nutrition Equation. Nature & Faune 28(2), 17–20, FAO Regional Office for Africa.Google Scholar
  64. Leakey, R. R. B. (2017a). Multifunctional Agriculture: Achieving Sustainable Development in Africa (p. 502). San Diego: Academic Press.Google Scholar
  65. Leakey, R. R. B. (2017b). Socially modified organisms in multifunctional agriculture – addressing the needs of smallholder farmers in Africa. Scientific Pages of Crop Science, 1, 20–29.Google Scholar
  66. Leakey, R.R.B. (2017c). Trees: a call to policy makers to meet farmers’ needs by combining environmental services with marketable products: an update. In Multifunctional agriculture: Achieving sustainable development in Africa (pp. 369–371). San Diego: Elsevier.Google Scholar
  67. Leakey, R. R. B. (2017d). Trees: meeting the social, economic and environmental needs of poor farmers—scoring sustainable development goals: an update. In Multifunctional agriculture: Achieving sustainable development in Africa (pp. 417–420). San Diego: Elsevier.Google Scholar
  68. Leakey, R.R.B. (2017e). Trees: Meeting the social, economic and environmental needs of poor farmers – Scoring sustainable development goals: an update. In Multifunctional agriculture: Achieving sustainable development in Africa (pp. 417–420). San Diego: Elsevier.Google Scholar
  69. Leakey, R. R. B., & Akinnifesi, F. K. (2008). Towards a domestication strategy for indigenous fruit trees in the tropics. In F. K. Akinnifesi, R. R. B. Leakey, O. C. Ajayi, et al. (Eds.), Indigenous Fruit Trees in the Tropics: Domestication, Utilization and Commercialization (pp. 28–49). Wallingford: CAB International.Google Scholar
  70. Leakey, R. R. B., & Asaah, E. K. (2013). Underutilised species as the backbone of multifunctional agriculture − The next wave of crop domestication. Acta Horticulturae, 979, 293–310.CrossRefGoogle Scholar
  71. Leakey, R. R. B., Fondoun, J.-M., Atangana, A., et al. (2000). Quantitative descriptors of variation in the fruits and seeds of Irvingia gabonensis. Agroforestry Systems, 50, 47–58.CrossRefGoogle Scholar
  72. Leakey, R. R. B., & Izac, A.-M. N. (1996). Linkages between domestication and commercialization of non-timber forest products: implications for agroforestry. In R. R. B. Leakey, A. B. Temu, M. Melnyk, & P. Vantomme (Eds.), Domestication and Commercialization of Non-timber Forest Products (pp. 1–7). Rome: Non-Wood Forest Products No. 9. FAO.Google Scholar
  73. Leakey, R. R. B., Kranjac-Berisavljevic, G., Caron, P., et al. (2009). Impacts of AKST on development and sustainability goals. In B. D. McIntyre, H. Herren, J. Wakhungu, & R. Watson (Eds.), International Assessment of Agricultural Science and Technology for Development: Global Report (pp. 145–253). New York: Island Press.Google Scholar
  74. Leakey, R. R. B., Mesén, J. F., Tchoundjeu, Z., et al. (1990). Low-technology techniques for the vegetative propagation of tropical trees. Commonwealth Forestry Review, 69, 247–257.Google Scholar
  75. Leakey, R. R. B., & Newton, A. C. (1994). Tropical Trees: Potential for Domestication, Rebuilding Forest Resources (p. 284). London: HMSO.Google Scholar
  76. Leakey, R. R. B., & Page, T. (2006). The ‘ideotype concept’ and its application to the selection of ‘AFTP’ cultivars. Forests, Trees and Livelihoods, 16, 5–16.CrossRefGoogle Scholar
  77. Leakey, R. R. B., & Prabhu, R. (2017). Towards multifunctional agriculture – an African initiative. In Multifunctional agriculture: Achieving sustainable development in Africa (pp. 393–414). San Diego: Academic Press.Google Scholar
  78. Leakey, R. R. B., Schreckenberg, K., & Tchoundjeu, Z. (2003). The participatory domestication of West African indigenous fruits. International Forestry Review, 5, 338–347.CrossRefGoogle Scholar
  79. Leakey, R. R. B., & Simons, A. J. (1997). The domestication and commercialization of indigenous trees in agroforestry for the alleviation of poverty. Agroforestry Systems, 38, 165–176.CrossRefGoogle Scholar
  80. Leakey, R. R. B., & Tomich, T. P. (1999). Domestication of tropical trees: from biology to economics and policy. In L. E. Buck, J. P. Lassoie, & E. C. M. Fernandes (Eds.), Agroforestry in Sustainable Ecosystems (pp. 319–338). New York: CRC Press/Lewis Publishers.Google Scholar
  81. Leakey, R. R. B., & van Damme, P. (2014). The role of tree domestication in value chain development. Forests, Trees and Livelihoods, 23, 116–126.CrossRefGoogle Scholar
  82. Leakey, R. R. B., Weber, J. C., Page, T., et al. (2012). Tree domestication in agroforestry: progress in the second decade. In P. K. Nair & D. Garrity (Eds.), Agroforestry–The Future of Global Land Use (pp. 145–173). USA: Springer.CrossRefGoogle Scholar
  83. Lilja, N., & Dixon, J. (2008). Responding to the challenges of impact assessment of participatory research and gender analysis. Experimental Agriculture, 44, 3–19.Google Scholar
  84. Lombard, C., & Leakey, R. R. B. (2010). Protecting the rights of farmers and communities while securing long term market access for producers of non-timber forest products: Experience in southern Africa. Forests, Trees and Livelihoods, 19, 235–249.CrossRefGoogle Scholar
  85. Maathai, W. (2009). The Challenge for Africa. New York: Random House Inc..Google Scholar
  86. Maes, J., Paracchini, M. L., Zulian, G., et al. (2012). Synergies and trade-offs between ecosystem service supply, biodiversity and habitat conservation status in Europe. Biological Conservation, 155, 1–12.CrossRefGoogle Scholar
  87. Mafongoya, P. L., Kuntashula, E., & Sileshi, G. (2006). Managing soil fertility and nutrient cycles through fertilizer trees in southern Africa. In N. Uphoff, A. S. Ball, E. Fernandes, et al. (Eds.), Biological Approaches to Sustainable Soil Systems (pp. 273–289). New York: CRC Press.CrossRefGoogle Scholar
  88. Mbosso, C., Degrande, A., Villamor, G. B., et al. (2015). Factors affecting the adoption of agricultural innovation: the case of Ricinodendron heudelotii kernel extraction machine in southern Cameroon. Agroforestry Systems, 89, 799–811.CrossRefGoogle Scholar
  89. Meadows, D. H., Meadows, G., Randers, J., & Behrens III, W. W. (1972). The Limits to Growth. New York: Universe Books.Google Scholar
  90. Michon, G., & de Foresta, H. (1995). The Indonesian agroforest model. Forest resource management and biodiversity conservation. In P. Halliday & D. A. Gilmour (Eds.), Conserving Biodiversity Outside Protected Areas: The Role of Traditional Agroecosystems (pp. 90–106). Gland: IUCN.Google Scholar
  91. Millennium Ecosystem Assessment. (2005). Ecosystems and Human Well-Being. Washington: Island Press.Google Scholar
  92. Moguel, P., & Toledo, V. M. (1999). Biodiversity conservation in traditional coffee systems of Mexico. Conservation Biology, 13, 11–21.CrossRefGoogle Scholar
  93. Mollee, E., Pouliot, M., & McDonald, M. A. (2017). Into the urban wild: Collection of wild urban plants for food and medicine in Kampala. Uganda, Land Use Policy, 63, 67–77.CrossRefGoogle Scholar
  94. Muñoz, D., Estrada, A., Naranjo, E., et al. (2006). Foraging ecology of howler monkeys in a cacao (Theobroma cacao) plantation in Comalcalco, México. American Journal of Primatology, 68, 127–142.PubMedCrossRefGoogle Scholar
  95. Ndungu, J. N., & Boland, D. J. (1994). Sesbania sesban collections in Southern Africa: developing a model for co-operation between a CGIAR Centre and NARS. Agroforestry Systems, 27, 129–143.CrossRefGoogle Scholar
  96. Nelson, E., Mendoza, G., Regetz, J., et al. (2009). Modeling multiple ecosystem services, biodiversity conservation, commodity production and tradeoffs at landscape scales. Frontiers in Ecology and the Environment, 7, 4–11.CrossRefGoogle Scholar
  97. Nestel, D., Dickschen, F., & Altieri, M. A. (1993). Diversity patterns of soil Coleoptera in Mexican shaded and unshaded coffee agroecosystems: an indication of habitat perturbation. Biodiversity and Conservation, 2, 70–78.CrossRefGoogle Scholar
  98. Ngadze, R. T., Verkerk, R., Nyanga, L. K., et al. (2017). Improvement of traditional processing of local monkey orange (Strychnos spp.) fruits to enhance nutrition security in Zimbabwe. Food Security, 9, 621–633.CrossRefGoogle Scholar
  99. Ngome, P. I. T. (2017). The contribution of fruits from trees to improve household food insecurity in the context of deforestation in Cameroon. PhD thesis, Rhodes University, Grahamstown, South Africa.Google Scholar
  100. Ngome, P. I. T., Shackleton, C., Degrande, A., et al. (2017). Addressing constraints in promoting wild edible plants’ utilization in household nutrition: case of the Congo Basin forest area. Agriculture and Food Security, 6, 20. Scholar
  101. Palm, C. A., Vosti, S. A., Sanchez, P. A., et al. (2005). Slash-and-Burn Agriculture: The Search for Alternatives (p. 463). New York: Columbia University Press.Google Scholar
  102. Pardee, G. L., & Philpott, S. M. (2011). Cascading indirect effects in a coffee agroecosystem: effects of parasitic phorid flies on ants and the coffee berry borer in a high-shade and low-shade habitat. Environmental Entomolology, 40, 581–588.CrossRefGoogle Scholar
  103. Pauku, R. L., Lowe, A., & Leakey, R. R. B. (2010). Domestication of indigenous fruit and nut trees for agroforestry in the Solomon Islands. Forests, Trees and Livelihoods, 19, 269–287.CrossRefGoogle Scholar
  104. Peng, J., Wang, Y., Wu, J., et al. (2011). The contribution of landscape ecology to sustainable land use research. Environmental Development and Sustainability, 13, 953.CrossRefGoogle Scholar
  105. Perfecto, I., Rice, R., Greenberg, R., et al. (1996). Shade coffee: a disappearing refuge for biodiversity. Bioscience, 46, 598–608.CrossRefGoogle Scholar
  106. Perfecto, I., & Snelling, R. (1995). Biodiversity and the transformation of a tropical agroecosystem: ants in coffee plantations. Ecological Applications, 5, 1084–1097.CrossRefGoogle Scholar
  107. Perfecto, I., Vandermeer, J. H., Bautista, G. L., et al. (2004). Greater predation in shaded coffee farms: the role of resident neotropical birds. Ecology, 85, 2677–2681.CrossRefGoogle Scholar
  108. Perfecto, I., Vandermeer, J., Hanson, P., et al. (1997). Arthropod biodiversity loss and the transformation of a tropical agroecosystem. Biodiversity and Conservation, 6, 935–945.CrossRefGoogle Scholar
  109. Perfecto, I., Vandermeer, J., & Philpott, S. M. (2014). Complex ecological interactions in coffee agroecosystems. Annual Review of Ecology, Evolution and Systematics, 45, 137–158.CrossRefGoogle Scholar
  110. Phalan, B., Onial, M., Balmford, A., et al. (2011). Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science, 333, 1289–1291.PubMedCrossRefGoogle Scholar
  111. Philpott, S. M., & Bichier, P. (2012). Effects of shade tree removal on birds in coffee agroecosystems in Chiapas, Mexico. Agriculture, Ecosystems and Environment, 149, 171–180.CrossRefGoogle Scholar
  112. Place, F., & Hazell, P. (1993). Productivity effects of indigenous land tenure systems in Sub-Saharan Africa. American Journal of Agricultural Economics, 75, 10–19.CrossRefGoogle Scholar
  113. Poppy, G. M., Chiotha, S., Eigenbrod, F., et al. (2014). Food security in a perfect storm: using the ecosystem services framework to increase understanding. Philosophical Transactions of the Royal Society, B., 369, 20120288.CrossRefGoogle Scholar
  114. Powell, B., Thilsted, S. H., Ickowitz, A., et al. (2015). Improving diets with wild and cultivated biodiversity from across the landscape. Food Security, 7, 535–554.CrossRefGoogle Scholar
  115. Power, A. G. (2010). Ecosystem services and agriculture: trade-offs and synergies. Philosophical Transactions of the Royal Society, B., 365, 2959–2971.CrossRefGoogle Scholar
  116. Pretty, J. (2006). Agroecological Approaches to Agricultural Development. Washington, DC: World Bank.Google Scholar
  117. Pretty, J., & Bharucha, Z. P. (2014). Sustainable intensification in agricultural systems. Annals of Botany, 114, 1571–1596.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Pretty, J., Toulmin, C., & Williams, S. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 9, 5–24.CrossRefGoogle Scholar
  119. Raintree, J. B. (1987). The state of the art of agroforestry diagnosis and design. Agroforestry Systems, 5, 219–250.CrossRefGoogle Scholar
  120. Rosenstock, T. S., Mpanda, M., Kimaro, A., et al. (2015). Science to support climate-smart agricultural development: Concepts and results from the MICCA pilot projects in East Africa, Mitigation of Climate Change in Agriculture Series, 10, FAO Rome, p. 47.Google Scholar
  121. Royal Society. (2009). Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture. (Rep. 11/09 RS1608). London: Royal Society.Google Scholar
  122. Sanchez, P. A. (2002). Soil fertility and hunger in Africa. Science, 192, 2019–2020.CrossRefGoogle Scholar
  123. Santilli, J. (2015). Agroforestry and the Law: the impact of legal instruments on agroforestry systems. Final Report to World Agroforestry Centre. Nairobi, Kenya, p. 86.Google Scholar
  124. Sayer, J., Sunderland, T., Ghazoul, J., et al. (2013). Ten principles for a landscape approach to reconciling agriculture, conservation and other competing land uses. Proceedings of the National Academy of Science, USA, 110, 8349–8356.CrossRefGoogle Scholar
  125. Schnorr, S. L., Candela, M., Rampelli, S., et al. (2014). Gut microbiome of the Hadza hunter-gatherers. Nature Communications, 5, 3654.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Schreckenberg, K., Awono, A., Degrande, A., et al. (2006). Domesticating indigenous fruit trees as a contribution to poverty reduction. Forests, Trees and Livelihoods, 16, 35–51.CrossRefGoogle Scholar
  127. Schreckenberg, K., Degrande, A., Mbosso, C., et al. (2002). The social and economic importance of Dacryodes edulis (G.Don) H.J. Lam in southern Cameroon. Forests, Trees and Livelihoods, 12, 15–40.CrossRefGoogle Scholar
  128. Schroth, G., & do Socorro Souza da Mota, M. (2014). Agroforestry: Complex Multistrata Agriculture. In N. van Alfen (Ed.), Encyclopedia of Agriculture and Food Systems (Vol. 1, pp. 195–207). San Diego: Elsevier.CrossRefGoogle Scholar
  129. Schroth, G., Krauss, U., Gasparotto, L., et al. (2000). Pests and diseases in agroforestry systems of the humid tropics. Agroforestry Systems, 50, 199–241.CrossRefGoogle Scholar
  130. Sebastian, K. (Ed.). (2014). Atlas of African Agriculture Research and Development–Revealing Agriculture’s Place in Africa (p. 108). Washington DC: IFPRI.Google Scholar
  131. Shackleton, S., Shackleton, C., Wynberg, R., et al. (2009). Livelihood trade-offs in the commercialisation of multiple use NTFP: lessons from marula (Sclerocarya birrea subsp. caffra) in southern Africa. Chapter 11. In R. U. Shaanker, A. J. Hiremath, G. C. Joseph, & N. D. Rai (Eds.), Non-timber Forest Products: Conservation, Management and Policy in the Tropics (pp. 139–173). Bangalore: Ashoka Trust for Research in Ecology and Environment.Google Scholar
  132. Sileshi, G., Akinnifesi, F. K., Ajayi, O. C., et al. (2008). Meta-analysis of maize yield response to planted fallow and green manure legumes in sub-Saharan Africa. Plant and Soil, 307, 1–19.CrossRefGoogle Scholar
  133. Sileshi, G., Akinnifesi, F. K., Debusho, L. K., et al. (2010). Variation in maize yield gaps with nutrient inputs, soil type and climate across sub-saharan Africa. Field Crops Research, 116, 1–13.CrossRefGoogle Scholar
  134. Sileshi, G. W., Mafongoya, P., Akinnifesi, F. K., et al. (2014). Agroforestry: Fertilizer trees. In N. Van Alfen (Ed.), Encyclopedia of Agriculture and Food Systems (Vol. 1, pp. 222–234). San Diego: Elsevier.CrossRefGoogle Scholar
  135. Simons, A. J., & Leakey, R. R. B. (2004). Tree domestication in tropical agroforestry. Agroforestry Systems, 61, 167–181.CrossRefGoogle Scholar
  136. Takoutsing, B., Tchoundjeu, Z., Degrande, A., et al. (2014). Scaling-up sustainable land management practices through the concept of the rural resource centre: reconciling farmers’ interests with research agendas. International Journal of Agricultural Extension Education, 20, 463–483.CrossRefGoogle Scholar
  137. Tchoundjeu, Z., Asaah, E., Anegbeh, P. O., et al. (2006). Putting participatory domestication into practice in West and Central Africa. Forests, Trees and Livelihoods, 16, 53–70.CrossRefGoogle Scholar
  138. Tchoundjeu, Z., Degrande, A., Leakey, R. R. B., et al. (2010). Impact of participatory tree domestication on farmer livelihoods in west and central Africa. Forests, Trees and Livelihoods, 19, 219–234.CrossRefGoogle Scholar
  139. Tchoundjeu, Z., Kengue, J., & Leakey, R. R. B. (2002). Domestication of Dacryodes edulis: state-of-the art. Forests, Trees and Livelihoods, 12, 3–14.CrossRefGoogle Scholar
  140. Tiffin, R., & Irz, X. (2006). Is agriculture the engine of growth? Agricultural Economics, 35, 79–89.CrossRefGoogle Scholar
  141. Todou, G., Doudou, K., & Vroumsia, T. (2017). Diversity and local transformation of indigenous edible fruits in Sahelian domain of Cameroon. Journal of Animal and Plant Sciences, 26, 5289–5300.Google Scholar
  142. Torquebiau, E., Cholet, N., Ferguson, W., et al. (2013). Designing an index to reveal the potential of multipurpose landscapes in Southern Africa. Land, 2, 705–725.CrossRefGoogle Scholar
  143. UNCCD. (2017). Global Land Outlook (1st ed.p. 336). Bonn: UNCCD.Google Scholar
  144. van Ittersum, M., van Bussela, L. G. J., Wolfa, J., et al. (2016). Can Sub-Saharan Africa feed itself? Proceedings of the National Academy of Science, USA, 113, 14964–14969.CrossRefGoogle Scholar
  145. van Noordwijk, M., Hoang, M. H., Neufeldt, H., et al. (2011). How trees and people can co-adapt to climate change: reducing vulnerability through multifunctional agroforestry landscapes (p. 131). Nairobi: World Agroforestry Centre.Google Scholar
  146. van Wijk, C. J., Rosenstock, T. S., van Asten, P. J. A., et al. (2016). Methods for Environment: Productivity Trade-Off Analysis in Agricultural Systems. In T. S. Rosenstock, M. C. Rufuino, K. Butterbach-Bahl, E. Wollenberg, & M. Richards (Eds.), Methods for Measuring Greenhouse Gas Balance and Evaluating Mitigation Options in Smallholder Agriculture (pp. 189–198). New York: Springer. Scholar
  147. Villamor, G. B., van Noordwijk, M., Leimona, B., et al. (2017). Tradeoffs. In S. Namirembe, B. Leimona, M. van Noordwijk, & P. Minang (Eds.), Co-investment in Ecosystem Services: lessons from payment and incentive schemes. Nairobi: World Agroforestry Centre.Google Scholar
  148. Waruhiu, A. N., Kengue, J., Atangana, A. R., et al. (2004). Domestication of Dacryodes edulis: 2. Phenotypic variation of fruit traits in 200 trees from four populations in the humid lowlands of Cameroon. Food, Agriculture and the Environment, 2, 340–346.Google Scholar
  149. Welch, R. M., Combs Jr., G. F., & Duxbury, J. M. (1997). Toward a "greener" revolution. Issues in Science and Technology, 14, 50–58.Google Scholar
  150. World Commission on Environment and Development. (1987). From One Earth to One World: An Overview. Oxford: Oxford University Press.Google Scholar
  151. World Economic Forum (2017). Shaping the Future of Global Food Systems: A Scenarios Analysis. A Report by the World Economic Forum’s System Initiative, World Economic Forum, Geneva, Switzerland, p. 28.Google Scholar
  152. Wynberg, R., Cribbins, J., Leakey, R. R. B., et al. (2002). A summary of knowledge on marula (Sclerocarya birrea subsp. caffra) with emphasis on its importance as a non-timber forest product in South and southern Africa. 2. Commercial use, tenure and policy, domestication, intellectual property rights and benefit-sharing. Southern African Forestry Journal, 196, 67–77.CrossRefGoogle Scholar
  153. Zomer, R. J., Neufeldt, H., Xu, J., et al. (2016). Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Nature Scientific Reports, 6, 29987. Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature and International Society for Plant Pathology 2018

Authors and Affiliations

  1. 1.International Tree FoundationOxfordEngland

Personalised recommendations