Advertisement

Food Security

, Volume 9, Issue 5, pp 907–927 | Cite as

Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses

  • Aditya ParmarEmail author
  • Barbara Sturm
  • Oliver Hensel
Review

Abstract

Cassava (Manihot esculenta Crantz) is one of the oldest root and tuber crops, used by humans to produce food, feed and beverages. Currently, cassava is produced in more than 100 countries and fulfils the daily caloric demands of millions of people living in tropical America, Africa, and Asia. Its importance as a food security crop is high in Western, Central and Eastern Africa due to its ability to produce reasonable yields (~10 t/ha) in poor soils and with minimal inputs. Traditionally a famine reserve and a subsistence crop, the status of cassava is now evolving fast as a cash crop and as raw material in the production of starch (and starch based products), energy (bio-ethanol) and livestock feed in the major producing countries. Cassava leaves, which are rich in protein and beta-carotenoids, are also used as a vegetable and forage (fresh or dehydrated meal) in various parts of the world. In recent years, some of the problems in the production of cassava have been increasing infection with cassava mosaic disease (CMD), cassava brown streak disease (CBSD) and cassava bacterial blight (CBB). Inherent post-harvest physiological disorder (PPD) and cyanogenic glycosides (CG) are some of the most prominent challenges for scientists, producers and consumers in the post-production systems. Collaborative research in participatory plant breeding is ongoing at leading international research institutes such as IITA and CIAT to improve crop resistance to virus diseases, reduce PPD and CG, and improve the overall nutritional characteristics. Further research should also focus on post-production systems by developing enhanced storage and transportation techniques, mechanisation (peeling, size reduction, drying and dewatering) and improved packaging. Moreover, a robust national policy, market development, and dissemination and extension program are required to realise the full potential of innovations and technologies in cassava production and processing.

Keywords

Cassava Cassava breeding Cassava leaves Cyanogenic glucosides Cassava mosaic disease Cassava brown streak disease Manihot esculenta Postharvest physiological disorder 

Notes

Acknowledgments

This work was supported by the German Academic Exchange Services (DAAD) and GlobeE project RELOAD (Grant No. 031A247A) funded by Ministry of Education and Research and Federal Ministry for Economic Cooperation and Development, Germany.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Achidi, A. U., Ajayi, O. A., Maziya-Dixon, B., & Bokanga, M. (2008). The effect of processing on the nutrient content of cassava (Manihot esculenta Crantz) leaves. Journal of Food Processing and Preservation, 32(3), 486–502.CrossRefGoogle Scholar
  2. Agbor-Egbe, T., & Lape Mbome, I. (2006). The effects of processing techniques in reducing cyanogen levels during the production of some Cameroonian cassava foods. Journal of Food Composition and Analysis, 19(4), 354–363.  https://doi.org/10.1016/j.jfca.2005.02.004.CrossRefGoogle Scholar
  3. Alabi, O. J., Mulenga, R. M., & Legg, J. P. (2015). Cassava Mosaic. In G. Fermin & P. Tennant (Eds.), Virus diseases of tropical and subtropical crops (pp. 42–55). Wallingford: CABI, Wallingford, UK.Google Scholar
  4. Allem, A. (2002). The origins and taxonomy of cassava. In R. J. Hillocks, J. M. Thresh, & A. Bellotti (Eds.), Cassava : Biology, production, and utilization (pp. 1–17). Wallingford: CAB International Wallingford, UK.Google Scholar
  5. Allem, A. C. (1999). The closest wild relatives of cassava (Manihot Esculenta Crantz). Euphytica, 107, 123–133.CrossRefGoogle Scholar
  6. Balagopalan, C. (2002). Cassava utilization in food, feed and industry. In R. J. Hillocks, J. M. Thresh, & A. C. Bellotti (Eds.), Cassava biology, production and utilization (pp. 301–318). Wallingford: CAB International Wallingford, UK.CrossRefGoogle Scholar
  7. Bellotti, A. C. (2002). Arthropod pests. In R. J. Hillocks, J. M. Thresh, & A. Bellotti (Eds.), Cassava biology, production and utilization (pp. 209–230). Wallingford: CAB International Wallingford, UK.CrossRefGoogle Scholar
  8. Bellotti, A. C., Smith, L., & Lapointe, S. L. (1999). Recent advances in cassava pest management. Annual Review of Entomology, 44, 343–370.CrossRefPubMedGoogle Scholar
  9. Bokanga, M. (1994). Processing of cassava leaves for human consumption. Acta Horticulturae, 375, 203–207.CrossRefGoogle Scholar
  10. Bokanga, M. (1999). Cassava: Post-harvest operations. In Information network on post- harvest operations (pp. 1–26). Rome: FAO.Google Scholar
  11. Bradbury, J. H., & Holloway, W. D. (1988). Chemistry of Tropical Root Crops: Significance for Nutrition and Agriculture in the Pacific. Canberra: Australian Centre for International Agricultural Research, monograph no. 6, Canberra, Australia.Google Scholar
  12. Byju, G., Nedunchezhiyan, M., Hridya, A. C., & Soman, S. (2016). Site-specific nutrient Management for Cassava in southern India. Agronomy Journal, 108(2), 830–840.CrossRefGoogle Scholar
  13. Byju, G., Nedunchezhiyan, M., Ravindran, C. S., Mithra, V. S. S., Ravi, V., & Naskar, S. K. (2012). Modeling the response of cassava to fertilizers: A site-specific nutrient management approach for greater tuberous root yield. Communications in Soil Science and Plant Analysis, 43, 1149–1162.CrossRefGoogle Scholar
  14. CABI. (2016). Invasive species compendium. CAB International. http://www.cabi.org/isc/datasheet/17107. Accessed 1 Dec 2016.
  15. Calvert, L. A., & Thresh, J. (2002). The viruses and virus diseases of cassava. In R. J. Hillocks, J. M. Thresh, & A. Bellotti (Eds.), Cassava : Biology, production, and utilization (pp. 237–260). Wallingford: CAB International Wallingford, UK.CrossRefGoogle Scholar
  16. Câmara, F. S., & Madruga, M. S. (2001). Cyanic acid, Phytic acid, total tannin and aflatoxin contents of a Brazilian (Natal) multimistura preparation. Revista de Nutrição, 14(1), 33–36.  https://doi.org/10.1590/S1415-52732001000100005.CrossRefGoogle Scholar
  17. Campo, B. V. H., Hyman, G., & Bellotti, A. (2011). Threats to cassava production: Known and potential geographic distribution of four key biotic constraints. Food Security, 3(3), 329–345.  https://doi.org/10.1007/s12571-011-0141-4.CrossRefGoogle Scholar
  18. Carter, S. E., Fresco, L. O., Jones, P. G., & Fairbairn, J. N. (1995). Introduction and diffusion of cassava in Africa. Ibadan: IITA (International Institute of Tropical Agriculture), Ibadan, Nigeria. https://www.researchgate.net/publication/40207427_Introduction_and_diffusion_of_cassava_in_Africa
  19. Chipeta, M. M., Shanahan, P., Melis, R., Sibiya, J., & Benesi, I. R. M. (2016). Early storage root bulking index and agronomic traits associated with early bulking in cassava. Field Crops Research, 198, 171–178.CrossRefGoogle Scholar
  20. Cliff, J., Muquingue, H., Nhassico, D., Nzwalo, H., & Bradbury, J. H. (2011). Konzo and continuing cyanide intoxication from cassava in Mozambique. Food and Chemical Toxicology, 49(3), 631–635.  https://doi.org/10.1016/j.fct.2010.06.056.CrossRefPubMedGoogle Scholar
  21. Cock, J. H. (1973). Cyanide toxicity in relation to the cassava research program of CIAT in Colombia. In B. Nestel & R. MacIntyre (Eds.), Chronic cassava toxicity (pp. 37–40). Ottawa: International Development Research Centre, Ottawa, Canada.Google Scholar
  22. Cock, J. H. (1985). Cassava: New potential for a neglected crop. Colorado: Westview Press Inc..Google Scholar
  23. CodexAlimentarius. (2013). Proposed draft: Maximum levels for Hydrocyanic Acid in Cassava and Cassava Products. Joint FAO/WHO Food Standards Programme, Rome, Italy. ftp://ftp.fao.org/codex/meetings/cccf/cccf7/cf07_10e.pdf. Accessed 12 December 2016.
  24. Coursey, D. G. (1973). Cassava as food: Toxicity and technology. In B. Nestle & R. MacIntyre (Eds.), Chronic cassava toxicity (pp. 27–36). Ottawa: International Development Research Centre.Google Scholar
  25. Denison, R. F. (2012). Darwinian agriculture: How understanding evolution can improve agriculture. Darwinian Agriculture: How Understanding Evolution Can Improve Agriculture. http://www.scopus.com/inward/record.url?eid=2-s2.0-84924338776&partnerID=tZOtx3y1%5Cn http://www.scopus.com/inward/record.url?eid=2-s2.0-84871790758&partnerID=tZOtx3y1
  26. Dixon, A. G. O., Asiedu, R., & Bokanga, M. (1994). Breeding of cassava for low cyanogenic potential: Problems, progress and prospects. ISHS Acta Horticulturae, 375, 153–161.  https://doi.org/10.17660/ActaHortic.1994.375.13.CrossRefGoogle Scholar
  27. Eggum, B. O. (1970). The protein quality of cassava leaves. British Journal of Nutrition, 24(3), 761–768.  https://doi.org/10.1079/BJN19700078.CrossRefPubMedGoogle Scholar
  28. El-Sharkawy, M. A. (2007). Physiological characteristics of cassava tolerance to prolonged drought in the tropics: Implications for breeding cultivars adapted to seasonally dry and semiarid environments. Brazilian Journal of Plant Physiology, 19(4), 257–286.  https://doi.org/10.1590/S1677-04202007000400003.CrossRefGoogle Scholar
  29. Ezui, K. S., Franke, A. C., Mando, A., Ahiabor, B. D. K., Tetteh, F. M., Sogbedji, J., et al. (2016). Fertiliser requirements for balanced nutrition of cassava across eight locations in West Africa. Field Crops Research, 185, 69–78.  https://doi.org/10.1016/j.fcr.2015.10.005.CrossRefGoogle Scholar
  30. FAOSTAT. (2014). FAOSTAT. Food and Agricultural Organization of the United Nations. http://data.fao.org/ref/262b79ca-279c-4517-93de-ee3b7c7cb553.html?version=1.0
  31. Golob, P., Farrell, G., & Orchard, J. (2002). Crop Post-Harvest: Science and Technology. (volume 1.). Oxford: Blackwell publication company, UK.Google Scholar
  32. Harvestplus. (2016). Biofortified Staple Food Crops: Who Is Growing What? file:///C:/Users/Aditya/Downloads/HarvestPlus_BiofortifiedCropMap_2016.pdf. Accessed 15 Nov 2016.Google Scholar
  33. Hillocks, R. J., & Wydra, K. (2002). Bacterial, fungal and nematode diseases. In R. J. Hillocks, J. M. Thresh, & A. Bellotti (Eds.), Cassava : Biology, production, and utilization (pp. 260–279). Wallingford: CAB International Wallingford, UK.CrossRefGoogle Scholar
  34. Howeler, R., Lutaladio, N., & Thomson, G. (2013). Save and grow: Cassava. A guide for sustainable production and intensification. Rome: Food and Agriculture Organization Of The United Nations.Google Scholar
  35. Howlett, W. P., Brubaker, G. R., Mlingi, N., & Rosling, H. (1990). Konzo, an epidemic upper motor neuron disease studied in tanzania. Brain, 113(1), 223–235.  https://doi.org/10.1093/brain/113.1.223.CrossRefPubMedGoogle Scholar
  36. Jarvis, A., Ramirez-Villegas, J., Campo, B. V. H., & Navarro-Racines, C. (2012). Is cassava the answer to African climate change adaptation? Tropical Plant Biology, 5(1), 9–29.  https://doi.org/10.1007/s12042-012-9096-7.CrossRefGoogle Scholar
  37. Jones, W. O. (1959). Manioc in Africa. Stanford: Stanford University Press, California.Google Scholar
  38. Kleih, U., Phillips, D., Wordey, M. T., & Komlaga, G. (2013). Cassava market and value chain analysis: Ghana case study. Natural Resources Institute, University of Greenwich, UK. https://agriknowledge.org/downloads/cn69m4217. Accessed 10 December 2016.
  39. Knoth, J. (1993). Traditional storage of yams and cassava and its improvement. Eschborn: Deutsche Gesellschaft fuer Technische Zusammenarbeit GmbH.Google Scholar
  40. Lancaster, P. A., & Brooks, J. E. (1983). Cassava leaves as human food. Economic Botany, 37(3), 331–348.  https://doi.org/10.1007/BF02858890.CrossRefGoogle Scholar
  41. Latif, S., & Müller, J. (2015). Potential of cassava leaves in human nutrition: A review. Trends in Food Science & Technology, 44(2), 147–158.  https://doi.org/10.1016/j.tifs.2015.04.006.CrossRefGoogle Scholar
  42. Lebot, V. (2009). Tropical root and tuber crops: Cassava, sweet potato, yams and aroids. Crop Production Science in Horticulture No. 17, CABI Publishing, Oxfordshire, UK.  https://doi.org/10.1017/S0014479709007832.
  43. Legg, J. P., & Fauquet, C. M. (2004). Cassava mosaic geminiviruses in Africa. Plant Molecular Biology, 56(4), 585–599.  https://doi.org/10.1007/s11103-004-1651-7.CrossRefPubMedGoogle Scholar
  44. Legg, J. P., Kumar, P. L., Kanju, E. E., Tennant, P., & Fermin, G. (2015). Cassava brown streak. In G. Fermin & P. Tennant (Eds.), Virus diseases of tropical and subtropical crops (pp. 42–55). Wallingford: CABI, Wallingford, UK.CrossRefGoogle Scholar
  45. Leihner, D. (2002). Agronomy and cropping systems. In R. J. Hillocks, J. M. Thresh, & A. Bellotti (Eds.), Cassava biology, production and utilization (pp. 91–113). Wallingford: CAB International.CrossRefGoogle Scholar
  46. Lozano, J. C. (1986). Cassava Bacterial Blight: A Manageable Disease. Plant Disease.  https://doi.org/10.1094/PD-70-1089.
  47. Lozano, J. C., Bellotti, A., Schoonhoven, A. van, Howeler, R., Doll, J., Howell, D., & Bates, T. (1976). Field problems in cassava. Field problems in cassava. Cali, Colombia: CIAT (International Center for Tropical Agriculture).Google Scholar
  48. Madhusudanan, M., Menon, M. K., Ummer, K., & Radhakrishnanan, K. (2008). Clinical and etiological profile of tropical ataxic neuropathy in Kerala, South India. European Neurology, 60(1), 21–26.  https://doi.org/10.1159/000127975.CrossRefPubMedGoogle Scholar
  49. Maraite, H. (1993). Xanthomonas campestris pathovars on cassava: Cause of bacterial blight and bacterial necrosis. In J. G. Swings & E. L. Civerolo (Eds.), Xanthomonas (pp. 18–25). London: Chapman and Hall.Google Scholar
  50. Maruthi, M. N., Hillocks, R. J., Mtunda, K., Raya, M. D., Muhanna, M., Kiozia, H., et al. (2005). Transmission of cassava brown streak virus by Bemisia Tabaci (Gennadius). Journal of Phytopathology, 153(5), 307–312.  https://doi.org/10.1111/j.1439-0434.2005.00974.x.CrossRefGoogle Scholar
  51. Montagnac, J. A., Davis, C. R., & Tanumihardjo, S. A. (2009). Processing techniques to reduce toxicity and antinutrients of cassava for use as a staple food. Comprehensive Reviews in Food Science and Food Safety, 8(1), 17–27.  https://doi.org/10.1111/j.1541-4337.2008.00064.x.CrossRefGoogle Scholar
  52. Montgomery, R. D. (1969). Cyanogens. In I. E. Liener (Ed.), Toxic constituents of plant foodstuffs (pp. 143–160). New York: Academic Press.CrossRefGoogle Scholar
  53. Muyinza, H., Nyakaisiki, E., Matovu, M., Nuwamanya, F., Wanda, K., Abass, A., & Naziri, D. (2015). Effectiveness of cassava stem pruning for inducing delay in postharvest physiological deterioration (PPD) of fresh roots. Uganda. www.rtb.cgiar.org/wp-content/uploads/2015/08/RPS/5/5.pptx Google Scholar
  54. Nambisan, B. (1994). Evaluation of the effect of various processing techniques on cyanogen content reduction in cassava. Acta Horticulturae, 375, 193–201.CrossRefGoogle Scholar
  55. Nassar, N. M. A., Fernandes, P. C., Melani, R. D., & Pires, O. R. (2009). Amarelinha do Amapá: A carotenoid-rich cassava cultivar. Genetics and Molecular Research, 8(3), 1051–1055.  https://doi.org/10.4238/vol8-3gmr625.CrossRefPubMedGoogle Scholar
  56. Naziri, D., Quaye, W., Siwoku, B., Wanlapatit, S., Viet Phu, T., & Bennett, B. (2014). The diversity of postharvest losses in cassava value chains in selected developing countries. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 115(2), 111–123.Google Scholar
  57. Nduwumuremyi, A., Melis, R., Shanahan, P., & Asiimwe, T. (2016). Participatory appraisal of preferred traits, production constraints and postharvest challenges for cassava farmers in Rwanda. Food Security, 8(2), 375–388.  https://doi.org/10.1007/s12571-016-0556-z.CrossRefGoogle Scholar
  58. Ngudi, D. D., Kuo, Y. H., & Lambein, F. (2003). Amino acid profiles and protein quality of cooked cassava leaves or “saka-saka.” Journal of the Science of Food and Agriculture, 83(6), 529–534.  https://doi.org/10.1002/jsfa.1373.
  59. Nhassico, D., Muquingue, H., Cliff, J., Cumbana, A., & Bradbury, J. H. (2008). Rising African cassava production, diseases due to high cyanide intake and control measures. Journal of the Science of Food and Agriculture.  https://doi.org/10.1002/jsfa.3337.
  60. Noon, R. A., & Booth, R. H. (1977). Nature of post-harvest deterioration of cassava roots. Transactions of the British Mycological Society, 69(2), 287–290.  https://doi.org/10.1016/s0007-1536(77)80049-1.CrossRefGoogle Scholar
  61. Nweke, F. I., Spencer, D. S. C., & Lynam, J. K. (2002). The cassava transformation: Africa’s best-kept secret. East Lansing: Michigan State University Press.Google Scholar
  62. Nyaboga, E., Njiru, J., Nguu, E., Gruissem, W., Vanderschuren, H., & Tripathi, L. (2013). Unlocking the potential of tropical root crop biotechnology in east Africa by establishing a genetic transformation platform for local farmer-preferred cassava cultivars. Frontiers in Plant Science, 4, 526.  https://doi.org/10.3389/fpls.2013.00526.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nzwalo, H., & Cliff, J. (2011). Konzo: From poverty, cassava, and cyanogen intake to toxico-nutritional neurological disease. PLoS Neglected Tropical Diseases.  https://doi.org/10.1371/journal.pntd.0001051.
  64. Odedina, S., Odedina, J., Ogunkoya, M., & Ojeniyi, S. (2009). Agronomic evaluation of new cassava varieties introduced to farmers in Nigeria, In African Crop Science Conference Proceedings, (pp. 77–80). Uganda: African Crop Science Society.Google Scholar
  65. Oguntade, A. E. (2013). Food losses in cassava and maize value chains in Nigeria: Analysis and recommendations for reduction strategies. Eschborn: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. Google Scholar
  66. Olsen, K. M. (2004). SNPs, SSRs and inferences on cassava’s origin. Plant Molecular Biology, 56(4), 517–526.  https://doi.org/10.1007/s11103-004-5043-9.CrossRefPubMedGoogle Scholar
  67. Olsen, K. M., & Schaal, B. A. (1999). Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proceedings of the National Academy of Sciences of the United States of America, 96, 5586–5591.  https://doi.org/10.1073/pnas.96.10.5586
  68. Osunde, Z., & Fadeyibi, A. (2012). Storage methods and some uses of cassava in Nigeria. Continental Journal of Agricultural Science, 5(2), 12–18.Google Scholar
  69. Osuntokun, B. O. (1973). Ataxic neuropathy Assiciated with high cassava diets in West Africa. In B. Nestel & R. MacIntyre (Eds.), Chronic cassava toxicity (pp. 127–138). Ottawa: International Development Research Centre.Google Scholar
  70. Owiti, J., Grossmann, J., Gehrig, P., Dessimoz, C., Laloi, C., Hansen, M. B., et al. (2011). ITRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. Plant Journal, 67(1), 145–156.  https://doi.org/10.1111/j.1365-313X.2011.04582.x.CrossRefPubMedGoogle Scholar
  71. Palmer, N. (2012). GCP21: Southern Brazil – The next pest hotspot for cassava? CIAT News (http://www.ciatnews.cgiar.org/).Google Scholar
  72. Parmar, A., Kirchner, S. M., Langguth, H., Do, T. F., & Hensel, O. (2017). Boxwood borer Heterobostrychus Brunneus (Coleoptera: Bostrichidae) infesting dried cassava: A current record from southern Ethiopia. Journal of Insect Science, 17(1), 1–8.  https://doi.org/10.1093/cercor/bhw393.CrossRefGoogle Scholar
  73. Ray, R. C., & Swain, M. R. (2012). Bio-ethanol, bio-plastics and other fermented industrial products from cassava starch and flour. In C. M. Pace (Ed.), Cassava: Farming, uses and economic impact (pp. 1–33). New York: Nova Science Publishers, Inc..Google Scholar
  74. Rees, D., Westby, A., Tomlins, K. I., Oirschot, Q. E. A. Van, Chemma, M. U. ., Cornelius, E., & Amjad, M. (2012). Tropical root crops. In D. Rees, G. Farrel, & J. Orchard (Eds.), Crop Post-Harvest: Science and Technology: Perishables (first edit., pp. 392–396). Sussex: Wiley Blackwell publishing ltd. UK.Google Scholar
  75. Reilly, K., Gómez-Vásquez, R., Buschmann, H., Tohme, J., & Beeching, J. R. (2004). Oxidative stress responses during cassava post-harvest physiological deterioration. Plant Molecular Biology, 56, 621–637.  https://doi.org/10.1007/s11103-005-2271-6.CrossRefGoogle Scholar
  76. Reynolds, T. W., Waddington, S. R., Anderson, C. L., Chew, A., True, Z., & Cullen, A. (2015). Environmental impacts and constraints associated with the production of major food crops in sub-Saharan Africa and South Asia. Food Security, 7(4), 795–822.  https://doi.org/10.1007/s12571-015-0478-1.CrossRefGoogle Scholar
  77. Rickard, J. E. (1985). Physiological deterioration of cassava roots. Journal of the Science of Food and Agriculture, 36(3), 167–176.  https://doi.org/10.1002/jsfa.2740360307.CrossRefGoogle Scholar
  78. Sánchez, T., Chávez, A. L., Ceballos, H., Rodriguez-Amaya, D. B., Nestel, P., & Ishitani, M. (2006). Reduction or delay of post-harvest physiological deterioration in cassava roots with higher carotenoid content. Journal of the Science of Food and Agriculture, 86(4), 634–639.  https://doi.org/10.1002/jsfa.2371.CrossRefGoogle Scholar
  79. Sargent, S. A. (2002). Cassava. Horticultural Sciences Department University of Florida, Gainesville, FL. https://www.researchgate.net/profile/Richard_Visser/publication/40108387_Cassava/links/0c960525c291948fc8000000.pdf.
  80. Shigaki, T. (2016). Cassava: Nature and uses. In B. Caballero, P. Finglas, & F. Toldra (Eds.), Encyclopedia of food and health (pp. 687–693). Oxford: Elsevier Ltd, UK.CrossRefGoogle Scholar
  81. Smith, R. E., Osothsilp, C., Bicho, P., & Gregory, K. F. (1986). Improvement in the protein content of cassava by Sporotrichumpulverulentum in solid state culture. Biotechnology Letters, 8(1), 31–36.CrossRefGoogle Scholar
  82. Sriroth, K., Santisopasri, V., Petchalanuwat, C., Kurotjanawong, K., Piyachomkwan, K., & Oates, C. (1999). Cassava starch granule structure–function properties: Influence of time and conditions at harvest on four cultivars of cassava starch. Carbohydrate Polymers, 38(2), 161–170.  https://doi.org/10.1016/S0144-8617(98)00117-9.CrossRefGoogle Scholar
  83. Storey, H. (1936). Virus diseases on east African plants. VI. A progress report on studies of the disease of cassava. East African Agricultural Journal, 2, 34–39.Google Scholar
  84. Thylmann, D., Druzhinina, E., & Deimling, S. (2013). The ecological footprint of cassava and maize post-harvest-losses in Nigeria: A life cycle assessment. Eschborn: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. https://www.giz.de/fachexpertise/downloads/giz2013-en-report-food-loss-of-maize-and-cassava.pdf
  85. Tylleskär, T., Rosling, H., Banea, M., Bikangi, N., Cooke, R. D., & Poulter, N. H. (1992). Cassava cyanogens and konzo, an upper motoneuron disease found in Africa. The Lancet, 339(8787), 208–211.  https://doi.org/10.1016/0140-6736(92)90006-O.CrossRefGoogle Scholar
  86. Uchechukwu-Agua, A. D., Caleb, O. J., & Opara, U. L. (2015). Postharvest handling and storage of fresh cassava root and products: A review. Food and Bioprocess Technology, 8(4), 729–748.  https://doi.org/10.1007/s11947-015-1478-z.CrossRefGoogle Scholar
  87. USDA. (2016). National Nutrient Database for Standard Reference Release, 28 https://ndb.nal.usda.gov/ndb/foods/show/2907?manu=&fgcd=&ds=. Accessed 30 Nov 2016.
  88. Uzokwe, V. N. E., Mlay, D. P., Masunga, H. R., Kanju, E., Odeh, I. O. A., & Onyeka, J. (2016). Combating viral mosaic disease of cassava in the Lake zone of Tanzania by intercropping with legumes. Crop Protection, 84, 69–80.  https://doi.org/10.1016/j.cropro.2016.02.013.CrossRefGoogle Scholar
  89. Waddington, S. R., Li, X., Dixon, J., Hyman, G., & de Vicente, M. C. (2010). Getting the focus right: Production constraints for six major food crops in Asian and African farming systems. Food Security, 2(1), 27–48.  https://doi.org/10.1007/s12571-010-0053-8.CrossRefGoogle Scholar
  90. Weerarathne, L. V. Y., Marambe, B., & Chauhan, B. S. (2016). Does intercropping play a role in alleviating weeds in cassava as a non-chemical tool of weed management? – A review. Crop Protection, 95, 81–88.  https://doi.org/10.1016/j.cropro.2016.08.028.CrossRefGoogle Scholar
  91. Yi, Y., Yulan, L., Tao, W., & Meiyun, Z. (2016). Design of the Self-Propelled Harvester for cassava. Journal of Agricultural Mechanization Research, 4, 22.Google Scholar
  92. Youpan, S., Yulan, L., & Danping, C. (2012). No title. Journal of Agricultural Mechanization Research, 2, 89–92.Google Scholar
  93. Zidenga, T. (2012). Delaying post-harvest physiological deterioration in cassava. VA: Virginia Tech Blacksburg http://www.isb.vt.edu/news/2012/Aug/Zidenga.pdf.Google Scholar

Copyright information

© Springer Science+Business Media B.V. and International Society for Plant Pathology 2017

Authors and Affiliations

  1. 1.Department of Agricultural and Biosystems EngineeringUniversity of KasselWitzenhausenGermany
  2. 2.School of Agriculture, Food and Rural DevelopmentNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations