Advertisement

Food Security

, Volume 9, Issue 3, pp 537–560 | Cite as

How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa

  • Christian ThierfelderEmail author
  • Pauline Chivenge
  • Walter Mupangwa
  • Todd S. Rosenstock
  • Christine Lamanna
  • Joseph X. Eyre
Review

Abstract

Climate resilient cropping systems are required to adapt to the increasing threats of climate change projected for Southern Africa and to better manage current climate variability. Conservation agriculture (CA) has been proposed among technologies that are climate-smart. For a cropping system to be labelled “climate-smart” it has to deliver three benefits: a) adapt to the effects of climate and be of increased resilience; b) mitigate climate effects by sequestering carbon (C) and reducing greenhouse gas emissions (GHG); and c) sustainably increase productivity and income. Research on smallholder farms from Southern Africa was analysed to assess if CA can deliver on the three principles of climate-smart agriculture. Results from Southern Africa showed that CA systems have a positive effect on adaptation and productivity, but its mitigation potential lags far behind expectations. CA systems maintain higher infiltration rates and conserve soil moisture, which helps to overcome seasonal dry-spells. Increased productivity and profitability were recorded although a lag period of 2–5 cropping seasons is common until yield benefits become significant. Immediate economic benefits such as reduced labour requirements in some systems will make CA more attractive in the short term to farmers who cannot afford to wait for several seasons until yield benefits accrue. The available data summarizing the effects of CA on soil organic C (SOC) and reductions in greenhouse gases, are often contradictory and depend a great deal on the agro-ecological environment and the available biomass for surface residue retention. There is an urgent need for more research to better quantify the mitigation effects, as the current data are scanty. Possible co-interventions such as improved intercropping/relay cropping systems, agroforestry and other tree-based systems may improve delivery of mitigation benefits and need further exploration.

Keywords

No-tillage Sustainable intensification Resilience Climate-smart agriculture Climate variability 

Notes

Acknowledgements

The authors acknowledge the logistical support of CIMMYT, ICRISAT, ICRAF and QUAAFI who have supported this study at various stages. Funding is gratefully acknowledged from the CGIAR Research Programs CCAFS and MAIZE. We thank the farmers, extension officers, field coordinators and researchers from the national programs of Malawi, Zambia, Mozambique and Zimbabwe. Special thanks go the Total LandCare for supporting CIMMYT’s research on CA systems in Malawi, Zambia and Mozambique for more than a decade.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflicts of interest whatsoever in publishing this research.

References

  1. Abdalla, K., Chivenge, P., Ciais, P., & Chaplot, V. (2015). No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: results from a meta-analysis. Biogeosciences Discussions, 12(18).Google Scholar
  2. Al-Kaisi, M. M., & Yin, X. (2005). Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn–soybean rotations. Journal of Environmental Quality, 34(2), 437–445.PubMedCrossRefGoogle Scholar
  3. Alvarez, R., & Steinbach, H. S. (2009). A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the argentine pampas. Soil and Tillage Research, 104(1), 1–15.CrossRefGoogle Scholar
  4. Andersson, J. A., & D'Souza, S. (2014). From adoption claims to understanding farmers and contexts: a literature review of conservation agriculture (CA) adoption among smallholder farmers in southern Africa. Agriculture, Ecosystems & Environment, 187, 116–132.CrossRefGoogle Scholar
  5. Baggs, E., Chebii, J., & Ndufa, J. (2006). A short-term investigation of trace gas emissions following tillage and no-tillage of agroforestry residues in western Kenya. Soil and Tillage Research, 90(1), 69–76.CrossRefGoogle Scholar
  6. Baker, J. M., Ochsner, T. E., Venterea, R. T., & Griffis, T. J. (2007). Tillage and soil carbon sequestration-what do we really know? Agriculture, Ecosystems and Environment, 118, 1–5.CrossRefGoogle Scholar
  7. Baudron, F., Delmotte, S., Corbeels, M., Herrera, J. M., & Tittonell, P. (2015a). Multi-scale trade-off analysis of cereal residue use for livestock feeding vs. soil mulching in the mid-Zambezi Valley, Zimbabwe. Agricultural Systems, 134, 97–106.CrossRefGoogle Scholar
  8. Baudron, F., Thierfelder, C., Nyagumbo, I., & Gérard, B. (2015b). Where to target conservation agriculture for African smallholders? How to overcome challenges associated with its implementation? Experience from eastern and southern Africa. Environments, 2(3), 338–357.CrossRefGoogle Scholar
  9. Bauer, P. J., Frederick, J. R., Novak, J. M., & Hunt, P. G. (2006). Soil CO2 flux from a Norfolk loamy sand after 25 years of conventional and conservation tillage. Soil and Tillage Research, 90(1), 205–211.CrossRefGoogle Scholar
  10. Berhe, A. A., Harte, J., Harden, J. W., & Torn, M. S. (2007). The significance of the erosion-induced terrestrial carbon sink. Bioscience, 57(4), 337–346.CrossRefGoogle Scholar
  11. Bronick, C. J., & Lal, R. (2005). Soil structure and management: a review. Geoderma, 124(1), 3–22.CrossRefGoogle Scholar
  12. Brown, M. E., & Funk, C. C. (2008). Climate: Food security under climate change. Science, 319(5863), 580–581.PubMedCrossRefGoogle Scholar
  13. Brown, L. R., & Wolf, E. C. (1984). Soil Erosion: quiet crisis in the world economy. Worldwatch Paper 60.Google Scholar
  14. Bunderson, W. T., Jere, Z. D., Thierfelder, C., Gama, M., Mwale, B. M., Ng'oma, S. W. D., et al. (2015). Implementing the principles of conservation agriculture in Malawi: crop yields and factors affecting adoption. In A. Kassam, S. Mkomwa, & T. Friedrich (Eds.), Conservation agriculture for Africa: Building resilient farming Systems in a Changing Climate. Wallingford: CABI Publishing.Google Scholar
  15. Bussière, F., & Cellier, P. (1994). Modification of the soil temperature and water content regimes by a crop residue mulch: experiment and modelling. Agricultural and Forest Meteorology, 68(1), 1–28.CrossRefGoogle Scholar
  16. Cairns, J. E., Sonder, K., Zaidi, P. H., Verhulst, N., Mahuku, G., Babu, R., et al. (2012). Maize production in a changing climate: impacts, adaptation, and mitigation strategies. In D. Sparks (Ed.), Advances in agronomy (Vol. 114, pp. 1–58). Burlington: Academic press.Google Scholar
  17. Cairns, J. E., Hellin, J., Sonder, K., Araus, J. L., MacRobert, J. F., Thierfelder, C., et al. (2013). Adapting maize production to climate change in sub-Saharan Africa. Food Security, 5(3), 345–360.CrossRefGoogle Scholar
  18. Cheesman, S., Thierfelder, C., Eash, N. S., Kassie, G. T., & Frossard, E. (2016). Soil carbon stocks in conservation agriculture systems of southern Africa. Soil and Tillage Research, 156, 99–109.CrossRefGoogle Scholar
  19. Chenu, K., Cooper, M., Hammer, G., Mathews, K., Dreccer, M., & Chapman, S. (2011). Environment characterization as an aid to wheat improvement: interpreting genotype–environment interactions by modelling water-deficit patterns in north-eastern Australia. Journal of Experimental Botany, 62(6), 1743–1755.PubMedCrossRefGoogle Scholar
  20. Chikowo, R., Mapfumo, P., Nyamugafata, P., & Giller, K. E. (2004). Mineral N dynamics, leaching and nitrous oxide losses under maize following two-year improved fallows on a sandy loam soil in Zimbabwe. Plant and Soil, 259(1–2), 315–330.CrossRefGoogle Scholar
  21. Chikowo, R., Mapfumo, P., Leffelaar, P. A., & Giller, K. E. (2006). Intergrating legumes to improve N cycling on smallholder farms in sub-humid Zimbabwe: resource quality, biophysical and environmental limitations. Nutrient Cycling in Agroecosystems, 76, 216–231.Google Scholar
  22. Chivenge, P. P., Murwira, H. K., Giller, K. E., Mapfumo, P., & Six, J. (2007). Long-term impact of reduced tillage and residue management on soil carbon stabilization: implications for conservation agriculture on contrasting soils. Soil and Tillage Research, 94(2), 328–337.CrossRefGoogle Scholar
  23. CIMMYT. (1988). From agronomic data to farmer recommendations: an economics training manual (completely revised edition). Mexico: CIMMYT.Google Scholar
  24. Corbeels, M., de Graaff, J., Ndah, T. H., Penot, E., Baudron, F., Naudin, K., et al. (2014). Understanding the impact and adoption of conservation agriculture in Africa: a multi-scale analysis. Agriculture, Ecosystems & Environment, 187, 155–170.CrossRefGoogle Scholar
  25. Derpsch, R., Friedrich, T., Kassam, A., & Hongwen, L. (2010). Current status of adoption of no-till farming in the world and some of its main benefits. International Journal of Agriculture and Biological Engineering, 3(1), 1–25.Google Scholar
  26. Derpsch, R., Lange, D., Birbaumer, G., & Moriya, K. (2016). Why do medium-and large-scale farmers succeed practicing CA and small-scale farmers often do not?–experiences from Paraguay. International Journal of Agricultural Sustainability, 14(3), 269–281.CrossRefGoogle Scholar
  27. Dowswell, C. R., Paliwal, R. L., & Cantrell, R. P. (1996). Maize in the third world. Colorado: Westview Press.Google Scholar
  28. Drinkwater, L. E., Wagoner, P., & Sarrantonio, M. (1998). Legume-based cropping systems have reduced carbon and nitrogen losses. Nature, 396(6708), 262–265.CrossRefGoogle Scholar
  29. FAO. (2013). Sourcebook on Climate-Smart Agriculture, Forestry and Fisheries. http://www.fao.org/climate-smart-agriculture/72611/en/. Food and Agriculture Organization of the United Nations.
  30. FAO (2015). Conservation agriculture. http://www.fao.org/ag/ca/ Accessed 20 Dec 2015.
  31. Farooq, M., Flower, K. C., Jabran, K., Wahid, A., & Siddique, K. H. M. (2011). Crop yield and weed management in rainfed conservation agriculture. Soil and Tillage Research, 117(0), 172–183. doi: 10.1016/j.still.2011.10.001.CrossRefGoogle Scholar
  32. Fernández-Ugalde, O., Virto, I., Bescansa, P., Imaz, M., Enrique, A., & Karlen, D. (2009). No-tillage improvement of soil physical quality in calcareous, degradation-prone, semiarid soils. Soil and Tillage Research, 106(1), 29–35.CrossRefGoogle Scholar
  33. Garrity, D., Akinnifesi, F., Ajayi, O., Sileshi, G. W., Mowo, J. G., Kalinganire, A., et al. (2010). Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Security, 2(3), 197–214.CrossRefGoogle Scholar
  34. Gentile, R., Vanlauwe, B., Chivenge, P., & Six, J. (2008). Interactive effects from combining fertilizer and organic residue inputs on nitrogen transformations. Soil Biology and Biochemistry, 40(9), 2375–2384.CrossRefGoogle Scholar
  35. Gentile, R., Vanlauwe, B., Chivenge, P., & Six, J. (2011). Trade-offs between the short-and long-term effects of residue quality on soil C and N dynamics. Plant and Soil, 338(1–2), 159–169.CrossRefGoogle Scholar
  36. Gilbert, N. (2012). Dirt poor: the key to tackling hunger in Africa is enriching its soil. The big debate is about how to do it. Nature, 483, 525–527.PubMedCrossRefGoogle Scholar
  37. Giller, K. E. (2001). Nitrogen fixation in tropical cropping systems (Vol. 2nd). New York: CABI Publishing.CrossRefGoogle Scholar
  38. Giller, K. E., Witter, E., Corbeels, M., & Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: The heretic’s view. Field Crops Research, 114, 23–34.CrossRefGoogle Scholar
  39. Giller, K. E., Corbeels, M., Nyamangara, J., Triomphe, B., Affholder, F., Scopel, E., et al. (2011). A research agenda to explore the role of conservation agriculture in African smallholder farming systems. Field Crops Research, 124(3), 468–472.Google Scholar
  40. Giller, K. E., Andersson, J. A., Corbeels, M., Kirkegaard, J., Mortensen, D., Erenstein, O., et al. (2015). Beyond conservation agriculture. Frontiers in Plant Science, 6(870).Google Scholar
  41. Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812–818.PubMedCrossRefGoogle Scholar
  42. Govaerts, B., Verhulst, N., Castellanos-Navarrete, A., Sayre, K. D., Dixon, J., & Dendooven, L. (2009). Conservation agriculture and soil carbon sequestration: between myth and farmer reality. Critical Reviews in Plant Sciences, 28(3), 97–122.CrossRefGoogle Scholar
  43. Grabowski, P. P., & Kerr, J. M. (2014). Resource constraints and partial adoption of conservation agriculture by hand-hoe farmers in Mozambique. International Journal of Agricultural Sustainability, 12(1), 37–53.CrossRefGoogle Scholar
  44. Grandy, A. S., Loecke, T. D., Parr, S., & Robertson, G. P. (2006). Long-term trends in nitrous oxide emissions, soil nitrogen, and crop yields of till and no-till cropping systems. Journal of Environmental Quality, 35(4), 1487–1495.PubMedCrossRefGoogle Scholar
  45. Gwenzi, W., Gotosa, J., Chakanetsa, S., & Mutema, Z. (2009). Effects of tillage systems on soil organic carbon dynamics, structural stability and crop yields in irrigated wheat (Triticum aestivum L.)-cotton (Gossypium hirsutum L.) rotation in semi-arid Zimbabwe. Nutrient Cycling in Agro-ecosystems, 83, 211–221.CrossRefGoogle Scholar
  46. Havlin, J., Kissel, D., Maddux, L., Claassen, M., & Long, J. (1990). Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Science Society of America Journal, 54(2), 448–452.CrossRefGoogle Scholar
  47. Hobbs, P. R. (2007). Conservation agriculture: what is it and why is it important for future sustainable food production? Journal of Agricultural Science, 145, 127–137.CrossRefGoogle Scholar
  48. Hudson, N. W. (1957). Erosion control research: Progress report at Henderson Research Station, 1953-1956. Rhodesia Agriculture Journal, 54, 297–323.Google Scholar
  49. ICRAF. (2009). Creating an Evergreen agriculture in Africa for food security and environmental resilience. Nairobi: World Agroforestry Centre.Google Scholar
  50. IPCC5. (2014a). Climate change 2014: impact adaptation and vulnerability, chapter 22, Africa. Working group II fifth assessment report (AR5). Geneva: Intergovernmental Panel on Climate Change.Google Scholar
  51. IPCC5. (2014b). Intergovernmental panel of climate change. Fifth assessment report (AR5). Geneva: WMO, UNEP http://www.ipcc.ch/report/ar5/.Google Scholar
  52. Jacinthe, P.-A., Lal, R., & Kimble, J. (2002). Carbon budget and seasonal carbon dioxide emission from a Central Ohio Luvisol as influenced by wheat residue amendment. Soil and Tillage Research, 67(2), 147–157.CrossRefGoogle Scholar
  53. Jaleta, M., Kassie, M., & Shiferaw, B. (2013). Tradeoffs in crop residue utilization in mixed crop–livestock systems and implications for conservation agriculture. Agricultural Systems, 121, 96–105.CrossRefGoogle Scholar
  54. Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423–436.CrossRefGoogle Scholar
  55. Johansen, C., Haque, M., Bell, R., Thierfelder, C., & Esdaile, R. (2012). Conservation agriculture for small holder rainfed farming: opportunities and constraints of new mechanized seeding systems. Field Crops Research, 132, 18–32.CrossRefGoogle Scholar
  56. Johnson, J. M. F., Reicosky, D. C., Allmaras, R. R., Sauer, T. J., Venterea, R. T., & Dell, C. J. (2005). Greenhouse gas contributions and mitigation potential of agriculture in the Central USA. Soil and Tillage Research, 83(1), 73–94.CrossRefGoogle Scholar
  57. Kamanga, B. C. G., Waddington, S. R., Robertson, M. J., & Giller, K. E. (2010). Risk analysis of maize-legume crop combinations with smallholder farmers varying in resource endowment in Central Malawi. Experimental Agriculture, 46(1), 1–21. doi: 10.1017/S0014479709990469.CrossRefGoogle Scholar
  58. Kassam, A., Friedrich, T., Shaxson, F., & Pretty, J. (2009). The spread of conservation agriculture: justification, sustainability and uptake. International Journal of Agricultural Sustainability, 7(4), 292–320.CrossRefGoogle Scholar
  59. Kassam, A., Friedrich, T., Derpsch, R., & Kienzle, J. (2015). Overview of the worldwide spread of conservation agriculture. Field Actions Science Reports. The journal of field actions, 8, 1–10.Google Scholar
  60. Kimaro, A. A., Mpanda, M., Rioux, J., Aynekulu, E., Shaba, S., Thiong’o, M., et al. (2015). Is conservation agriculture ‘climate-smart’for maize farmers in the highlands of Tanzania? Nutrient Cycling in Agroecosystems, Published online, 105(3), 217–228.Google Scholar
  61. Kladviko, E. J., Mackay, A. D., & Bradford, J. M. (1986). Earthworms as a factor in the reduction of soil crusting. Soil Science Society of America Journal, 50, 191–196.CrossRefGoogle Scholar
  62. Klocke, N., Currie, R., & Aiken, R. (2009). Soil water evaporation and crop residues. Transactions of the ASABE, 52(1), 103–110.CrossRefGoogle Scholar
  63. Krupinsky, J. M., Bailey, K. L., McMullen, M. P., Gossen, B. D., & Turkington, T. K. (2002). Managing plant disease risk in diversified cropping systems. Agronomy Journal, 94(2), 198–209.CrossRefGoogle Scholar
  64. Kumwenda, J. D. T., Waddington, S. R., Snapp, S. S., Jones, R. B., & Blackie, M. J. (1998). Soil Fertility Management in Southern Africa. In D. Byerlee & C. K. Eicher (Eds.), Africa’s Emerging Maize Revolution (p. 305). Colorado: Lynne Rienner Publishers.Google Scholar
  65. La Rovere, R., Kostandini, G., Abdoulaye, T., Dixon, J., Mwangi, W., Guo, Z., & Bänziger, M. (2010). Potential impact of investments in drought tolerant maize in Africa. CIMMYT, Addis: CIMMYT.Google Scholar
  66. Lal, R. (1974). Soil temperature, soil moisture and maize yield from mulched and unmulched tropical soils. Plant and Soil, 40(1), 129–143.CrossRefGoogle Scholar
  67. Lal, R. (2003). Soil erosion and the global carbon budget. Environment International, 29(4), 437–450.PubMedCrossRefGoogle Scholar
  68. Lin, B. B. (2011). Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience, 61(3), 183–193.CrossRefGoogle Scholar
  69. Linn, D., & Doran, J. (1984). Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal, 48(6), 1267–1272.CrossRefGoogle Scholar
  70. Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., et al. (2014). Climate-smart agriculture for food security. Nature Climate Change, 4(12), 1068–1072.CrossRefGoogle Scholar
  71. Liu, X. J., Mosier, A. R., Halvorson, A. D., & Zhang, F. S. (2006). The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes from a clay loam soil. Plant and Soil, 280(1–2), 177–188.CrossRefGoogle Scholar
  72. Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science, 319, 607–610.PubMedCrossRefGoogle Scholar
  73. Lobell, D. B., Hammer, G. L., McLean, G., Messina, C., Roberts, M. J., & Schlenker, W. (2013). The critical role of extreme heat for maize production in the United States. Nature Climate Change, 3(5), 497–501.CrossRefGoogle Scholar
  74. Luo, Z., Wang, E., & Sun, O. J. (2010). Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agriculture, Ecosystems and Environment, 139(1–2), 224–231. doi: 10.1016/j.agee.2010.08.006.CrossRefGoogle Scholar
  75. Mafongoya, P. L., Bationo, A., Kihara, J., & Waswa, B. S. (2006). Appropriate technologies to replenish soil fertilityin southern Africa. Nutrient Cycling in Agroforestry, 76, 137–171.CrossRefGoogle Scholar
  76. Mapanda, F., Wuta, M., Nyamangara, J., & Rees, R. (2011). Effects of organic and mineral fertilizer nitrogen on greenhouse gas emissions and plant-captured carbon under maize cropping in Zimbabwe. Plant and Soil, 343(1), 67–81. doi: 10.1007/s11104-011-0753-7.CrossRefGoogle Scholar
  77. Mashingaidze, N., Madakadze, C., Twomlow, S., Nyamangara, J., & Hove, L. (2012). Crop yield and weed growth under conservation agriculture in semi-arid Zimbabwe. Soil and Tillage Research, 124, 102–110. doi: 10.1016/j.still.2012.05.008.CrossRefGoogle Scholar
  78. Mazvimavi, K. (2011). Socio-Economic Analysis of Conservation Agriculture in Southern Africa Johannesburg, South Africa: Food and Agricultural Organization of the United Nations (FAO). Regional Emergency Office for Southern Africa (REOSA). Network paper 02, January 2011.Google Scholar
  79. Mazvimavi, K., & Twomlow, S. (2009). Socioeconomic and institutional factors influencing adoption of conservation agriculture by vulnerable households in Zimbabwe. Agricultural Systems, 101, 20–29.CrossRefGoogle Scholar
  80. Mazvimavi, K., Ndlovu, P. V., Nyathi, P., & Minde, I. J. (2010). Conservation Agriculture Practices and Adoption by Smallholder Farmers in Zimbabwe. Cape Town, South Africa, September 19–23, 2010: Poster presented at the Joint 3rd African Association of Agricultural Economists (AAAE) and 48th Agricultural Economists Association of South Africa (AEASA) Conference.Google Scholar
  81. McCarthy, N., Lipper, L., & Branca, G. (2011). Climate-smart agriculture: smallholder adoption and implications for climate change adaptation and mitigation. Mitigation of Climate Change in Agriculture Working Paper, 3,1–37.Google Scholar
  82. Mchunu, C. N., Lorentz, S., Jewitt, G., Manson, A., & Chaplot, V. (2011). No-till impact on soil and soil organic carbon erosion under crop residue scarcity in Africa. Soil Science Society of America Journal, 75(4), 1503–1512.CrossRefGoogle Scholar
  83. Mengel, D., Nelson, D., & Huber, D. (1982). Placement of nitrogen fertilizers for no-till and conventional till corn. Agronomy Journal, 74(3), 515–518.CrossRefGoogle Scholar
  84. Millar, N., Ndufa, J., Cadisch, G., & Baggs, E. (2004). Nitrous oxide emissions following incorporation of improved-fallow residues in the humid tropics. Global Biogeochemical Cycles, 18(1), published online.Google Scholar
  85. Mueller, D. H., Klemme, R. M., & Daniel, T. C. (1985). Short-and long-term cost comparisons of conventional and conservation tillage systems in corn production. Journal of Soil and Water Conservation, 40(5), 466–470.Google Scholar
  86. Mujuru, L., Mureva, A., Velthorst, E., & Hoosbeek, M. (2013). Land use and management effects on soil organic matter fractions in Rhodic Ferralsols and haplic Arenosols in Bindura and Shamva districts of Zimbabwe. Geoderma, 209, 262–272.CrossRefGoogle Scholar
  87. Munyati, M. (1997). Conservation tillage for sustainable crop production systems: Results and experiences from on-station and on-farm research (1988-1996). The Zimbabwe Science News, 31(2), 27–33.Google Scholar
  88. Muoni, T., Rusinamhodzi, L., Rugare, J. T., Mabasa, S., Mangosho, E., Mupangwa, W., et al. (2014). Effect of herbicide application on weed flora under conservation agriculture in Zimbabwe. Crop Protection, 66, 1–7.CrossRefGoogle Scholar
  89. Mupangwa, W. (2009). Water and nitrogen management for risk mitigation in semi-arid cropping systems. Bloemfontein, PhD Thesis, University of the Free State.Google Scholar
  90. Mupangwa, W., Twomlow, S., Walker, S., & Hove, L. (2007). Effect of minimum tillage and mulching on maize (Zea mays L.) yield and water content of clayey and sandy soil. Physics and Chemistry of the Earth, 32, 1127–1134.CrossRefGoogle Scholar
  91. Mupangwa, W., Twomlow, S., & Walker, S. (2012). Reduced tillage, mulching and rotational effects on maize (Zea mays L.), cowpea (Vigna unguiculata (Walp) L.) and sorghum (Sorghum bicolor L. (Moench)) yields under semi-arid conditions. Field Crops Research, 132(0), 139–148.CrossRefGoogle Scholar
  92. Mupangwa, W., Twomlow, S., & Walker, S. (2016). Reduced tillage and nitrogen effects on soil water dynamics and maize (Zea mays L.) yield under semi-arid conditions. International Journal of Agricultural Sustainability, 14(1), 13–30.CrossRefGoogle Scholar
  93. Nair, P. (2011). Agroforestry systems and environmental quality: Introduction. Journal of Environmental Quality, 40(3), 784–790.PubMedCrossRefGoogle Scholar
  94. Nair, P. R., Kumar, B. M., & Nair, V. D. (2009). Agroforestry as a strategy for carbon sequestration. Journal of Plant Nutrition and Soil Science, 172(1), 10–23.CrossRefGoogle Scholar
  95. Ncube, B., Twomlow, S. J., Dimes, J. P., Van Wijk, M. T., & Giller, K. E. (2009). Resource flows, crops and soil fertility management in smallholder farming systems in semi-arid Zimbabwe. Soil Use and Management, 25(1), 78–90.CrossRefGoogle Scholar
  96. Neufeldt, H., Jahn, M., Campbell, B. M., Beddington, J. R., DeClerck, F., De Pinto, A., et al. (2013). Beyond climate-smart agriculture: toward safe operating spaces for global food systems. Agriculture & Food Security, 2(1), 12.CrossRefGoogle Scholar
  97. Ngwira, A. R., Aune, J. B., & Mkwinda, S. (2012). On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi. Field Crops Research, 132, 149–157.CrossRefGoogle Scholar
  98. Ngwira, A. R., Thierfelder, C., & Lambert, D. M. (2013). Conservation agriculture systems for Malawian smallholder farmers: long-term effects on crop productivity, profitability and soil quality. Renewable Agriculture and Food Systems, 28(04), 350–363.CrossRefGoogle Scholar
  99. Ngwira, A. R., Johnsen, F. H., Aune, J. B., Mekuria, M., & Thierfelder, C. (2014). Adoption and extent of conservation agriculture practices among smallholder farmers in Malawi. Journal of Soil and Water Conservation, 69(2), 107–119.CrossRefGoogle Scholar
  100. Nkonya, E., Mirzabaev, A., & Von Braun, J. (2015). Economics of land degradation and improvement: a global assessment for sustainable development. New York: Springer.Google Scholar
  101. Nyamadzawo, G., Nyamugafata, P., Chikowo, R., & Giller, K. E. (2003). Partitioning of simulated rainfall in a kaolinitic soil under improved fallow-maize rotation in Zimbabwe. Agroforestry Systems, 59(3), 207–214.CrossRefGoogle Scholar
  102. Nyamadzawo, G., Chikowo, R., Nyamugafata, P., & Giller, K. E. (2007). Improved legume tree fallows and tillage effects on structural stability and infiltration rates of a kaolinitic sandy soil from Central Zimbabwe. Soil and Tillage Research, 96(1–2), 182–194.CrossRefGoogle Scholar
  103. Nyamadzawo, G., Chikowo, R., Nyamugafata, P., Nyamangara, J., & Giller, K. E. (2008). Soil organic carbon dynamics of improved fallow-maize rotation systems under conventional and no-tillage in Central Zimbabwe. Nutrient Cycling in Agroecosystems, 81(1), 85–93.CrossRefGoogle Scholar
  104. Nyamangara, J., Masvaya, E. N., Tirivavi, R., & Nyengerai, K. (2013). Effect of hand-hoe based conservation agriculture on soil fertility and maize yield in selected smallholder areas in Zimbabwe. Soil and Tillage Research, 126, 19–25.CrossRefGoogle Scholar
  105. Nyamangara, J., Marondedze, A., Masvaya, E., Mawodza, T., Nyawasha, R., Nyengerai, K., et al. (2014a). Influence of basin-based conservation agriculture on selected soil quality parameters under smallholder farming in Zimbabwe. Soil Use and Management, 30(4), 550–559.CrossRefGoogle Scholar
  106. Nyamangara, J., Nyengerai, K., Masvaya, E., Tirivavi, R., Mashingaidze, N., Mupangwa, W., et al. (2014b). Effect of conservation agriculture on maize yield in the semi-arid areas of Zimbabwe. Experimental Agriculture, 50(02), 159–177.CrossRefGoogle Scholar
  107. O'Dell, D., Sauer, T. J., Hicks, B. B., Thierfelder, C., Lambert, D. M., Logan, J., et al. (2015). A short-term assessment of carbon dioxide fluxes under contrasting agricultural and soil management practices in Zimbabwe. Journal of Agriculture Science, 7(3), 32–48.Google Scholar
  108. Oldeman, L. R., Engelen, V. W. P., & Pulles, J. H. M. (1990). The extent of the status of human-induced soil degradation. Annex 5: world map of the status of human-induced soil degradation, an explanaotry note. Wageningen: UNEP-ISRIC.Google Scholar
  109. Oldrieve, B. (1993). Conservation farming for communal, small scale, resettlement and co-operative farmers of Zimbabwe: a farm management handbook. Prestige Business Services (Pvt) Ltd: Harare.Google Scholar
  110. Oorts, K., Merckx, R., Gréhan, E., Labreuche, J., & Nicolardot, B. (2007). Determinants of annual fluxes of CO 2 and N 2 O in long-term no-tillage and conventional tillage systems in northern France. Soil and Tillage Research, 95(1), 133–148.CrossRefGoogle Scholar
  111. Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., et al. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science-AAAS-Weekly Paper Edition, 267(5201), 1117–1122.Google Scholar
  112. Pittelkow, C. M., Liang, X., Linquist, B. A., Van Groenigen, K. J., Lee, J., Lundy, M. E., et al. (2015). Productivity limits and potentials of the principles of conservation agriculture. Nature, 517(7534), 365–368.PubMedCrossRefGoogle Scholar
  113. Powlson, D. S., Stirling, C. M., Jat, M., Gerard, B. G., Palm, C. A., Sanchez, P. A., et al. (2014). Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4(8), 678–683.CrossRefGoogle Scholar
  114. Powlson, D. S., Stirling, C. M., Thierfelder, C., White, R. P., & Jat, M. L. (2016). Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems? Agriculture Ecosystems and Environment, 220, 164–174.CrossRefGoogle Scholar
  115. Ramirez-Villegas, J., & Thornton, P. K. (2015). Climate change impacts on African crop production. In CCAFS Working Paper No. 119. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).Google Scholar
  116. Reeves, D., Norfleet, M., Abrahamson, D., Schomberg, H., Causarano, H., & Hawkins, G. (2005). Conservation tillage in Georgia: Economics and water resources.Google Scholar
  117. Reicosky, D. C. (2000). Tillage induced CO 2 emissions from soil. Nutrient Cycling in Agroecosystems, 49, 273–285.CrossRefGoogle Scholar
  118. Rockström, J., Kaumbutho, P., Mwalley, J., Nzabi, A. W., Temesgen, M., Mawenya, L., et al. (2009). Conservation farming strategies in east and southern Africa: yields and rain water productivity from on-farm action research. Soil and Tillage Research, 103(1), 23–32.CrossRefGoogle Scholar
  119. Rosenstock, T. S., Lamanna, C., Chesterman, S., Bell, P., Arslan, A., Richards, M., et al. (2016). The scientific basis of climate-smart agriculture: a systematic review protocol.Google Scholar
  120. Roth, C. H., Meyer, B., Frede, H. G., & Derpsch, R. (1988). Effect of mulch rates and tillage systems on infiltrability and other soil physical properties of an Oxisol in Parafla, Brazil. Soil and Tillage Research, 11, 81–91.CrossRefGoogle Scholar
  121. Rowhani, P., Lobell, D. B., Linderman, M., & Ramankutty, N. (2011). Climate variability and crop production in Tanzania. Agricultural and Forest Meteorology, 151(4), 449–460.CrossRefGoogle Scholar
  122. Rufino, M. C., Tittonell, P., van Wijk, M. T., Castellanos-Navarrete, A., Delve, R. J., de Ridder, N., et al. (2007). Manure as a key resource within smallholder farming systems: analysing farm-scale nutrient cycling efficiencies with the NUANCES framework. Livestock Science, 112(3), 273–287.CrossRefGoogle Scholar
  123. Rufino, M. C., Dury, J., Tittonell, P., van Wijk, M. T., Herrero, M., Zingore, S., et al. (2011). Competing use of organic resources, village-level interactions between farm types and climate variability in a communal area of NE Zimbabwe. Agricultural Systems, 104(2), 175–190.CrossRefGoogle Scholar
  124. Rusinamhodzi, L. (2015). Tinkering on the periphery: Labour burden not crop productivity increased under no-till planting basins on smallholder farms in Murehwa district, Zimbabwe. Field Crops Research, 170, 66–75.CrossRefGoogle Scholar
  125. Rusinamhodzi, L., Corbeels, M., Nyamangara, J., & Giller, K. E. (2012). Maize–grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in Central Mozambique. Field Crops Research, 136, 12–22.CrossRefGoogle Scholar
  126. Sainju, U. M., Jabro, J. D., & Stevens, W. B. (2008). Soil carbon dioxide emission and carbon content as affected by irrigation, tillage, cropping system, and nitrogen fertilization. Journal of Environmental Quality, 37(1), 98–106.PubMedCrossRefGoogle Scholar
  127. Sanchez, P. (2002). Soil fertility and hunger in Africa. Science, 295, 2019–2020.PubMedCrossRefGoogle Scholar
  128. Scherr, S. J., Shames, S., & Friedman, R. (2012). From climate-smart agriculture to climate-smart landscapes. Agriculture and Food Security, 1, 12.CrossRefGoogle Scholar
  129. Schmidhuber, J., & Tubiello, F. N. (2007). Global food security under climate change. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19703–19708.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Sims, B. G., Thierfelder, C., Kienzle, J., Friedrich, T., & Kassam, A. (2012). Development of the conservation agriculture equipment industry in sub-Saharan Africa. Applied Engineering in Agriculture, 28(6), 813–823.CrossRefGoogle Scholar
  131. Six, J., Feller, C., Denef, K., Ogle, S. M., de Morales Sa, J. C., & Albrecht, A. (2002). Soil organic matter, biota and aggregation in temerate and tropical soils - effects of no-tillage. Agronomie, 22, 755–775.CrossRefGoogle Scholar
  132. Six, J., Ogle, S. M., Conant, R. T., Mosier, A. R., & Paustian, K. (2004). The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Biology, 10(2), 155–160.CrossRefGoogle Scholar
  133. Smith, R. G., Gross, K. L., & Robertson, G. P. (2008a). Effects of crop diversity on agroecosystem function: crop yield response. Ecosystems, 11(3), 355–366.CrossRefGoogle Scholar
  134. Smith, W. N., Grant, B. B., Desjardins, R. L., Qian, B., Hutchinson, J., & Gameda, S. (2008b). Potential impact of climate change on carbon in agricultural soils in Canada 2000-2099. Climatic Change, 93(3), 319–333.Google Scholar
  135. Snapp, S. S., Blackie, M. J., Gilbert, R. A., Bezner-Kerr, R., & Kanyama-Phiri, G. Y. (2010). Biodiversity can support a greener revolution in Africa. Proceedings of the National Academy of Sciences, 107(48), 20840–20845.CrossRefGoogle Scholar
  136. Sorrenson, W. J., Duarte, C., & Lopez Portillo, J. (1998). Economics of no-tillage compared to traditional cultivation on small farms in Paraguay, Asunci¢n. MAG/GTZ Soil Conservation Project.Google Scholar
  137. Stallard, R. F. (1998). Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Global Biogeochemical Cycles, 12(2), 231–257.CrossRefGoogle Scholar
  138. Thierfelder, C., & Wall, P. C. (2009). Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil and Tillage Research, 105(2), 217–227.CrossRefGoogle Scholar
  139. Thierfelder, C., & Wall, P. C. (2010a). Investigating conservation agriculture (CA) Systems in Zambia and Zimbabwe to mitigate future effects of climate change. Journal of Crop Improvement, 24(2), 113–121.CrossRefGoogle Scholar
  140. Thierfelder, C., & Wall, P. C. (2010b). Rotations in conservation agriculture systems of Zambia: effects on soil quality and water relations. Experimental Agriculture, 46(03), 309–325.CrossRefGoogle Scholar
  141. Thierfelder, C., & Wall, P. C. (2012). Effects of conservation agriculture on soil quality and productivity in contrasting agro-ecological environments of Zimbabwe. Soil Use and Management, 28(2), 209–220.CrossRefGoogle Scholar
  142. Thierfelder, C., Cheesman, S., & Rusinamhodzi, L. (2012). A comparative analysis of conservation agriculture systems: Benefits and challenges of rotations and intercropping in Zimbabwe. Field Crops Research, 137, 237–250.CrossRefGoogle Scholar
  143. Thierfelder, C., Cheesman, S., & Rusinamhodzi, L. (2013a). Benefits and challenges of crop rotations in maize-based conservation agriculture (CA) cropping systems of southern Africa. International Journal of Agricultural Sustainability, 11(2), 108–124.CrossRefGoogle Scholar
  144. Thierfelder, C., Chisui, J. L., Gama, M., Cheesman, S., Jere, Z. D., Bunderson, W. T., et al. (2013b). Maize-based conservation agriculture systems in Malawi: long-term trends in productivity. Field Crop Research, 142, 47–57.CrossRefGoogle Scholar
  145. Thierfelder, C., Mwila, M., & Rusinamhodzi, L. (2013c). Conservation agriculture in eastern and southern provinces of Zambia: Long-term effects on soil quality and maize productivity. Soil and Tillage Research, 126(0), 246–258.CrossRefGoogle Scholar
  146. Thierfelder, C., Mutenje, M., Mujeyi, A., & Mupangwa, W. (2014). Where is the limit? Lessons learned from long-term conservation agriculture research in Zimuto Communal Area, Zimbabwe. Food Security, 7, 15–31.CrossRefGoogle Scholar
  147. Thierfelder, C., Bunderson, W. T., Jere Zwide D, Mutenje, M., & Ngwira, A. R. (2016c). Development of Conservation Agriculture (CA) Systems in Malawi: Lessons learned from 2005–2014. Experimental Agriculture, (4), 579–604.Google Scholar
  148. Thierfelder, C., Matemba-Mutasa, R., & Rusinamhodzi, L. (2015a). Yield response of maize (Zea mays L.) to conservation agriculture cropping system in southern Africa. Soil and Tillage Research, 146, 230–242.CrossRefGoogle Scholar
  149. Thierfelder, C., Rusinamhodzi, L., Ngwira, A. R., Mupangwa, W., Nyagumbo, I., Kassie, G. T., et al. (2015b). Conservation agriculture in southern Africa: advances in knowledge. Renewable Agriculture and Food Systems, 30(4), 328–348.CrossRefGoogle Scholar
  150. Thierfelder, C., Rusinamhodzi, L., Setimela, P., Walker, F., & Eash, N. S. (2016a). Conservation agriculture and drought-tolerant germplasm: reaping the benefits of climate-smart agriculture technologies in Central Mozambique. Renewable Agriculture and Food Systems, 156, 99–109.Google Scholar
  151. Thierfelder, C., Matemba-Mutasa, R., Bunderson, W. T., Mutenje, M., Nyagumbo, I., & Mupangwa, W. (2016b). Evaluating manual conservation agriculture systems in southern Africa. Agriculture Ecosystems and Environment, 222, 112–124.CrossRefGoogle Scholar
  152. Thornton, P. K., Jones, P. G., Ericksen, P. J., & Challinor, A. J. (2011). Agriculture and food systems in sub-Saharan Africa in a 4°C+ world. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1934), 117–136.CrossRefGoogle Scholar
  153. Tittonell, P., Scopel, E., Andrieu, N., Posthumus, H., Mapfumo, P., Corbeels, M., et al. (2012). Agroecology-based aggradation-1 conservation agriculture (ABACO): targeting innovations to combat soil degradation and food insecurity in semi-arid Africa. Field Crop Research, 132, 168–174.CrossRefGoogle Scholar
  154. Tonucci, R. G., Nair, P., Nair, V. D., Garcia, R., & Bernardino, F. S. (2011). Soil carbon storage in silvopasture and related land-use systems in the Brazilian Cerrado. Journal of Environmental Quality, 40(3), 833–841.PubMedCrossRefGoogle Scholar
  155. Valbuena, D., Erenstein, O., Homann-Kee Tui, S., Abdoulaye, T., Claessens, L., Duncan, A. J., et al. (2012). Conservation agriculture in mixed crop–livestock systems: Scoping crop residue trade-offs in sub-Saharan Africa and South Asia. Field Crops Research, 132, 175–184.CrossRefGoogle Scholar
  156. van Kessel, C., Venterea, R., Six, J., Adviento-Borbe, M. A., Linquist, B., & Groenigen, K. J. (2013). Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta-analysis. Global Change Biology, 19(1), 33–44.PubMedCrossRefGoogle Scholar
  157. Van Oost, K., Quine, T., Govers, G., De Gryze, S., Six, J., Harden, J., et al. (2007). The impact of agricultural soil erosion on the global carbon cycle. Science, 318(5850), 626–629.PubMedCrossRefGoogle Scholar
  158. Venterea, R. T., & Stanenas, A. J. (2008). Profile analysis and modeling of reduced tillage effects on soil nitrous oxide flux. Journal of Environmental Quality, 37(4), 1360–1367.PubMedCrossRefGoogle Scholar
  159. Verchot, L. V., Van Noordwijk, M., Kandji, S., Tomich, T., Ong, C., Albrecht, A., et al. (2007). Climate change: linking adaptation and mitigation through agroforestry. Mitigation and Adaptation Strategies for Global Change, 12(5), 901–918.CrossRefGoogle Scholar
  160. Verhulst, N., Govaerts, B., Verachtert, E., Castellanos-Navarrete, A., Mezzalama, M., Wall, P. C., et al. (2010). Conservation agriculture, improving soil quality for sustainable production systems. In R. Lal & B. A. Stewart (Eds.), Advances in soil science: food security and soil quality (pp. 137–208). Boca Raton: CRC Press.Google Scholar
  161. Waddington, S. R. (2003). Grain legumes and green manures for soil fertility in southern Africa: taking stock of progress. Proceedings of a conference held 8–11 October 2002 at the leopard rock hotel, Vumba, Zimbabwe. Harare: SoilFertNet and CIMMYT-Zimbabwe.Google Scholar
  162. Wall, P. C. (2007). Tailoring conservation agriculture to the needs of small farmers in developing countries: an analysis of issues. Journal of Crop Improvement, 19(1/2), 137–155.CrossRefGoogle Scholar
  163. Wall, P. C., Thierfelder, C., Ngwira, A. R., Govaerts, B., Nyagumbo, I., & Baudron, F. (2013). Conservation agriculture in eastern and southern Africa. In R. A. Jat, K. L. Sahrawat, & A. H. Kassam (Eds.), Conservation agriculture: global prospects and challenges. Wallingford: CABI.Google Scholar
  164. Ward, F. A. (2015). Economics of surface water management: a review. In A. Dinar & K. Schwabe (Eds.), Handbook of water economics (p. 221). Cheltenham: Edward Elgar Publishing.CrossRefGoogle Scholar
  165. West, T. O., & Post, W. M. (2002). Soil organic carbon sequestration rates by tillage and crop rotation. Soil Science Society of America Journal, 66(6), 1930–1946.CrossRefGoogle Scholar
  166. Wheeler, T., & von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508–513.PubMedCrossRefGoogle Scholar
  167. Wulf, S., Lehmann, J., & Zech, W. (1999). Emissions of nitrous oxide from runoff-irrigated and rainfed soils in semiarid north-West Kenya. Agriculture, Ecosystems & Environment, 72(2), 201–205.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht and International Society for Plant Pathology 2017

Authors and Affiliations

  • Christian Thierfelder
    • 1
    Email author
  • Pauline Chivenge
    • 2
  • Walter Mupangwa
    • 1
  • Todd S. Rosenstock
    • 3
  • Christine Lamanna
    • 3
  • Joseph X. Eyre
    • 4
  1. 1.International Maize and Wheat Improvement Centre (CIMMYT)HarareZimbabwe
  2. 2.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)BulawayoZimbabwe
  3. 3.World Agroforestry Centre (ICRAF)NairobiKenya
  4. 4.Queensland Alliance for Agriculture and Food InnovationUniversity of Queensland, CIMMYTHarareZimbabwe

Personalised recommendations