Food Security

, Volume 9, Issue 2, pp 311–327 | Cite as

Crop health and its global impacts on the components of food security

  • S. Savary
  • S. Bregaglio
  • L. Willocquet
  • D. Gustafson
  • D. Mason D’Croz
  • A. Sparks
  • N. Castilla
  • A. Djurle
  • C. Allinne
  • Mamta Sharma
  • V. Rossi
  • L. Amorim
  • A. Bergamin
  • J. Yuen
  • P. Esker
  • Neil McRoberts
  • J. Avelino
  • E. Duveiller
  • J. Koo
  • K. Garrett
Original Paper

Abstract

The literature on the importance of plant pathogens sometimes emphasizes their possible role in historical food shortages and even in famines. Aside from such major crises, plant pathogens should also be seen as important reducers of crop performances, with impacts on system sustainability, from the ecological, agronomical, social, and economic standpoints – all contributing ultimately to affecting food security. These views need reconciliation in order to produce a clearer picture of the multidimensional effects of plant disease epidemics. Such a picture is needed for disease management today, but would also be useful for future policies. This article attempts to develop a framework that would enable assessment of the impacts of plant diseases, referred collectively to as crop health, on food security via its components. We have combined three different existing definitions of food security in order to develop a framework consisting of the following six components: (1) Availability. Primary production; (2) Availability. Import - Stockpiles; (3) Access. Physical and supply chain; (4) Access. Economic; (5) Stability of food availability; (6) Utility-Safety-Quality-Nutritive value. In this framework, components of food security are combined with three attributes of production situations: the nature of the considered crop (i.e. food- or non-food), the structure of farms (i.e. subsistence or commercial), and the structure of markets (i.e. weakly organized and local, to strongly organized and globalized). The resulting matrix: [Food security components] × [Attributes of production situations] provides a framework where the impacts of chronic, acute, and emerging plant disease epidemics on food security can be examined. We propose that, given the number of components and interactions at play, a systems modelling approach is required to address the functioning of food systems exposed to plant disease risks. This approach would have application in both the management of the current attrition of crop performances by plant diseases, and also of possible disease-induced shocks. Such an approach would also enable quantifying shifts in disease vulnerability of production situations, and therefore, of food systems, as a result of climate change, globalization, and evolving crop health.

Keywords

Plant disease epidemics Epidemiology Crop losses Chronic epidemics Acute epidemics Emerging epidemics 

References

  1. Acharya, T., Fanzo, J., Gustafson, D., Ingram, J., & Schneeman, B. (Convening Lead Authors). (2014). Sustainable nutrition security: the role of food systems. ILSI Research Foundation: Washington DC, 39 pp.Google Scholar
  2. Avelino, J., Zelaya, H., Merlo, A., Pineda, A., Ordoñez, M., & Savary, S. (2006). The intensity of a coffee rust epidemic is dependent on production situations. Ecological Modelling, 197(3–4), 431–447.CrossRefGoogle Scholar
  3. Avelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., Läderach, P., Anzueto, F., Hruska, A. J., & Morales, C. (2015). The coffee rust crises in Colombia and central America (2008–2013): impacts, plausible causes and proposed solutions. Food Security, 7(2), 303–321.CrossRefGoogle Scholar
  4. Barnwal, M. K., Kotasthane, A., Magculia, N., Mukherjee, P. K., Savary, S., Sharma, A. K., Singh, H. B., Singh, U. S., Sparks, A. H., Variar, M., & Zaidi, N. (2013). A review on crop losses, epidemiology and disease management of rice brown spot to identify research priorities and knowledge gaps. European Journal of Plant Pathology, 136(3), 443–457.CrossRefGoogle Scholar
  5. Bateman, G. L., Gutteridge, R. J., Gherbawy, Y., Thomsett, M. A., & Nicholson, P. (2007). Infection of stem bases and grains of winter wheat by fusarium culmorum and F. Graminearum and effects of tillage method and maize-stalk residues. Plant Pathology, 56(4), 604–615.CrossRefGoogle Scholar
  6. Bourke, P. M. A. (1964). Emergence of potato blight, 1843-46. Nature (London), 203(4947), 805–808.CrossRefGoogle Scholar
  7. Breman, H., & De Wit, C. T. (1983). Rangeland productivity and exploitation in the Sahel. Science, 221, 1341–1347.PubMedCrossRefGoogle Scholar
  8. Chakrabarti, N. K. (2001). Epidemiology and disease management of brown spot of rice in India. In: S. Sreenivasaprasad, R. Johnson (Eds.), Major Fungal Disease of Rice: Recent Advances (pp. 293–306). Kluwer Academic Publishers.Google Scholar
  9. Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security: an overview. Plant Pathology, 60(1), 2–14.CrossRefGoogle Scholar
  10. Cheatham, M. R., Rouse, M. N., Esker, P. D., Ignacio, S., Pradel, W., Raymundo, R., Sparks, A. H., Forbes, G. A., Gordon, T. R., & Garrett, K. A. (2009). Beyond yield: plant disease in the context of ecosystem services. Phytopathology, 99(11), 1228–1236.PubMedCrossRefGoogle Scholar
  11. Chen, S., & Ravallion, M. (2007). Absolute poverty measures for the developing world, 1981–2004. Proceedings of the National Academy of Sciences, 104(43), 16757–16762.CrossRefGoogle Scholar
  12. Day, J. P., & Shattock, R. C. (1997). Aggressiveness and other factors relating to displacement of populations of Phytophthora infestans in England and Wales. European Journal of Plant Pathology, 103(4), 379–391.CrossRefGoogle Scholar
  13. Desker, B., Caballero-Anthony, M., & Teng, P. (2013). Thought/issues paper on ASEAN food security: towards a more comprehensive framework. In ERIA Discussion Paper Series [ERIA-DP-2013-20]. Singapore: Rajaratnam School of International Studies.Google Scholar
  14. Dill-Macky, R., & Jones, R. K. (2000). The effect of previous crop residues and tillage on fusarium head blight of wheat. Plant Disease, 84(1), 71–76.CrossRefGoogle Scholar
  15. Ding, K. J., Tan, G. J., Hu, J. S., & Zhou, S. C. (1997). Yield loss of rice damaged by rice false smut. Plant Protection, 23(1), 3–6.Google Scholar
  16. Döring, T. F., Pautasso, M., Finckh, M. R., & Wolfe, M. S. (2012). Concepts of plant health–reviewing and challenging the foundations of plant protection. Plant Pathology, 61, 1–15.CrossRefGoogle Scholar
  17. Eversmeyer, M. G., & Kramer, C. L. (2000). Epidemiology of wheat leaf and stem rust in the central Great Plains of the USA. Annual Review of Phytopathology, 38, 491–513.PubMedCrossRefGoogle Scholar
  18. Food and Agricultural Organisation (FAO) (1996). Rome declaration on world food security and world food summit plan of action. World Food Summit 13–-17 November 1996. Rome. http://www.fao.org/docrep/003/w3613e/w3613e00.HTM Accessed 28 January 2016.
  19. Food and Agricultural Organisation (FAO) (2016). FAO cereal supply and demand brief. http://www.fao.org/worldfoodsituation/csdb/en/ Accessed Sept 8, 2016
  20. Food and Agricultural Organisation (FAO), Agriculture and Development Economics Division (ESA). (2006). Food security. Policy Brief, issue 2. http://www.fao.org/forestry/13128-0e6f36f27e0091055bec28ebe830f46b3.pdf Accessed 28 January 2016
  21. Food and Agricultural Organisation (FAO), International Fund for Agricultural Development (IFAD) and World Food Programme (WFP) (2013). The state of food insecurity in the world 2013. The multiple dimensions of food security. Rome, FAO. http://www.fao.org/docrep/018/i3434e/i3434e.pdf Accessed 28 January 2016.
  22. Fraser, E. D. G. (2003). Social vulnerability and ecological fragility: building bridges between social and natural sciences using the Irish potato famine as a case study. Conservation Ecology, 7(2), 9. http://www.consecol.org/vol7/iss2/art9 Accessed 28 January 2016.
  23. Goodwin, S. B., Cohen, B. A., & Fry, W. E. (1994). Panglobal distribution of a single clonal lineage of the Irish potato famine fungus. Proceedings of the National Academy of Sciences USA, 91(24), 11591–11595.CrossRefGoogle Scholar
  24. Goodwin, S. B., Sujkowski, L. S., & Fry, W. E. (1996). Widespread distribution and probable origin of resistance to metalaxyl in clonal genotypes of Phytophthora infestans in the United States and western Canada. Phytopathology, 86(7), 793–799.CrossRefGoogle Scholar
  25. Gregory, P. J., Johnson, S. N., Newton, A. C., & Ingram, J. S. (2009). Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60(10), 2827–2838.PubMedCrossRefGoogle Scholar
  26. Gustafson, D. (2011). Climate change: a crop protection challenge for the twenty-first century. Pest Management Science, 67, 691–696.PubMedCrossRefGoogle Scholar
  27. Gustafson, D., Gutman, A., Leet, W., Drewnowski, A., Fanzo, J., & Ingram, J. (2016). Seven food system metrics of sustainable nutrition security. Sustainability, 8, 196. doi:10.3390/su8030196.CrossRefGoogle Scholar
  28. Headey, D. (2011). Rethinking the global food crisis: the role of trade shocks. Food Security, 36(2), 136–146.Google Scholar
  29. Honkura, R. (1989). Outbreak of false smut disease of rice in Tohoku District, 1988. Noyaku Graph, 111, 6–7.Google Scholar
  30. Jukanti, A. K., Gaur, P. M., Gowda, C. L., & Chibbar, R. N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. The British Journal of Nutrition, 108, 11–26. doi:10.1017/S0007114512000797.CrossRefGoogle Scholar
  31. Koiso, Y., Natori, M., Iwasaki, S., Sato, S., Sonoda, R., Fujita, Y., Yaegashi, H., & Sato, Z. (1992). Ustiloxin: a phytotoxin and a mycotoxin from false smut balls on rice panicles. Tetrahedron Letters, 33(29), 4157–4160.CrossRefGoogle Scholar
  32. Koiso, Y., Morisaki, N., Yamashita, Y., Mitsui, Y., Shirai, R., Hashimoto, Y., & Iwasaki, S. (1998). Isolation and structure of an antimitotic cyclic peptide, ustiloxin F: chemical interrelation with a homologous peptide, ustiloxin B. The Journal of Antibiotics, 51(4), 418–422.PubMedCrossRefGoogle Scholar
  33. Koyama, K., & Natori, S. (1988). Further characterization of seven bis(naphtho-λ-pyrone) congeners of ustilaginoidins, coloring matters of Claviceps virens (Ustilaginoidea virens). Chemical and Pharmaceutical Bulletin, 36(1), 146–152.CrossRefGoogle Scholar
  34. Lu, D. H., Yang, X. Q., Mao, J. H., Ye, H. L., Wang, P., Chen, Y. P., He, Z. Q., & Chen, F. (2009). Characterising the pathogenicity diversity of Ustilaginoidea virens in hybrid rice in China. Journal of Plant Pathology, 91(2), 443–451.Google Scholar
  35. McCook, S., & Vandermeer, J. (2015). The big rust and the red queen: long-term perspectives on coffee rust research. Phytopathology, 105(9), 1164–1173.PubMedCrossRefGoogle Scholar
  36. McKenzie, F., & Williams, J. (2015). Sustainable food production: constraints, challenges and choices by 2050. Food Security, 7, 221–233.CrossRefGoogle Scholar
  37. McMullen, M. P., Jones, R., & Gallenberg, D. (1997). Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Disease, 81(12), 1340–1348.CrossRefGoogle Scholar
  38. McMullen, M., Bergstrom, G., De Wolf, E., Dill-Macky, R., Hershman, D., Shaner, G., & Van Sanford, D. (2012). A unified effort to fight an enemy of wheat and barley: fusarium head blight. Plant Disease, 96(12), 1712–1728.CrossRefGoogle Scholar
  39. Meng, J., Sun, W., Mao, Z., Xu, D., Wang, X., Lu, S., Lai, D., Liu, Y., Zhou, L., & Zhang, G. (2015). Main ustilaginoidins and their distribution in rice false smut balls. Toxins, 7(10), 4023–4034.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Mew, T. W., Bridge, J., Hibino, H., Bonman, J. M. & Merca, S. D. (1988). Rice pathogens of quarantine importance. in: Rice Seed Health. Proceedings of the International Workshop on Rice Seed Health, 16–-20 March 1987 (pp. 101–115). Manila, Philippines: International Rice Research Institute.Google Scholar
  41. Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: synthesis. Washington, DC: Island Press.Google Scholar
  42. Milus, E. A., Kristensen, K., & Hovmøller, M. S. (2009). Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. Sp. tritici causing stripe rust of wheat. Phytopathology, 99(1), 89–94.PubMedCrossRefGoogle Scholar
  43. Nagarajan, S., & Joshi, L. M. (1985). Epidemiology in the Indian subcontinent. In A. P. Roelfs & W. R. Bushnell (Eds.), The cereal rusts Vol. II (pp. 371–402). New York: Academic Press.Google Scholar
  44. Nessa, B., Salam, M. U., & Haque, A. H. M. M. (2015). FLYER: a simple yet robust model for estimating yield loss from rice false smut disease (Ustilaginoidea virens). American Journal of Agricultural and Biological Sciences, 10(1), 41–54.CrossRefGoogle Scholar
  45. Ou, S. H. (1985). Rice diseases (Second ed.). Slough (UK): C.A.B. International.Google Scholar
  46. Padmanabhan, S. Y. (1973). The great Bengal famine. Annual Review of Phytopathology, 11, 11–26.CrossRefGoogle Scholar
  47. Pardey, P. G., Beddow, J. M., Kriticos, D. J., Hurley, T. M., Park, R. F., Duveiller, E., Sutherst, R. W., Burdon, J. J., & Hodson, D. (2013). Right-sizing stem-rust research. Science, 340, 147–148.PubMedCrossRefGoogle Scholar
  48. Parry, D. W., Jenkinson, P., & McLeod, L. (1995). Fusarium ear blight (scab) in small grain cereals – a review. Plant Pathology, 44(2), 207–238.CrossRefGoogle Scholar
  49. Pingali, P. L., & Rosegrant, M. W. (1995). Agriculture commercialization and diversification: processes and policies. Food Policy, 20(3), 171–185.CrossRefGoogle Scholar
  50. Rabbinge, R., & De Wit, C. T. (1989). Systems, models and simulation. Pages 3–15 in. Simulation and Systems Management in Crop Protection. R. Rabbinge, S. A. Ward, and R. van Laar, eds. Pudoc, Wageningen, The Netherlands.Google Scholar
  51. Reddy, C. S., Laha, G. S., Prasad, M. S., Krishnaveni, D., Castilla, N. P., Nelson, A., & Savary, S. (2011). Characterizing multiple linkages between individual diseases, crop health syndromes, germplasm deployment, and rice production situations in India. Field Crops Research, 120(2), 241–253.CrossRefGoogle Scholar
  52. Roelfs, A. P. (1978). Estimated losses caused by rust in small grain cereals in the United States—1918–76. US Department of Agriculture, Miscellaneous Publications, 1363, 85 pp.Google Scholar
  53. Roelfs, A. P. (1985). Epidemiology in North America. In A. P. Roelfs & W. R. Bushnell (Eds.), The cereal rusts, Vol. II: Diseases, Distribution, Epidemiology, and Control (pp. 404–434). Orlando: Academic Press.Google Scholar
  54. Roy, A. K. (1980). Records of heavy attack of bunt and false smut of rice. International Rice Research Newsletter, 5(6), 5–6.Google Scholar
  55. Saari, E. E., & Prescott, J. M. (1985). World distribution in relation to economic losses. In A. P. Roelfs & W. R. Bushnell (Eds.), The cereal rusts, Vol. II: Diseases, Distribution, Epidemiology, and Control (pp. 259–298). Orlando: Academic Press.Google Scholar
  56. Savary, S. (2014). The roots of crop health: cropping practices and disease management. Food Security, 6(6), 819–831.CrossRefGoogle Scholar
  57. Savary, S., Willocquet, L., Elazegui, F. A., Castilla, N., & Teng, P. S. (2000). Rice pest constraints in tropical Asia: quantification of yield losses due to rice pests in a range of production situations. Plant Disease, 84(3), 357–369.CrossRefGoogle Scholar
  58. Savary, S., Teng, P., Willocquet, L., & Nutter, F. J. (2006). Quantification and modeling of crop losses: a review of purposes. Annual Review of Phytopathology, 44, 89–112.PubMedCrossRefGoogle Scholar
  59. Savary, S., Nelson, A., Sparks, A. H., Willocquet, L., Duveiller, E., Mahuku, G., Forbes, G., Garrett, K., Hodson, D., Padgham, J., Pande, S., Sharma, S., Yuen, J., & Djurle, A. (2011). International agricultural research tackling the effects of global and climate changes on plant diseases in the developing world. Plant Disease, 95(10), 1204–1216.CrossRefGoogle Scholar
  60. Savary, S., McRoberts, N., Esker, P. D., Willocquet, L., & Teng, P. S. (2016). Production situations as drivers of crop health: evidence and implications. Phytopathology. doi:10.1111/ppa.12659.
  61. Sen, A. (1977). Starvation and exchange entitlements: a general approach and its application to the great Bengal famine. Cambridge Journal of Economics, 1(1), 33–59.CrossRefGoogle Scholar
  62. Sharma, M., & Pande, S. (2013). Unravelling effects of temperature and soil moisture stress response on development of dry root rot [Rhizoctonia bataticola (Taub.)] butler in chickpea. American Journal of Plant Sciences, 4, 584–589.CrossRefGoogle Scholar
  63. Sharma, M., Ghosh, R., & Pande, S. (2016). Dry root rot (Rhizoctonia bataticola (Taub.) Butler): an emerging disease of chickpea – where do we stand? Archives of Phytopathology and Plant Protection. doi:10.1080/03235408.2016.1140564.Google Scholar
  64. Singh, A. K., & Pophaly, D. J. (2010). An unusual rice false smut epidemic reported in Raigarh District, Chhattisgarh, India. International Rice Research Notes, 35, 1–3.Google Scholar
  65. Singh, R. P., Hodson, D. P., Huerta-Espino, J., Jin, Y., Njau, P., Wanyera, R., Herrera-Foessel, S. A., & Ward, R. W. (2008). Will stem rust destroy the world's wheat crop? Advances in Agronomy, 98, 271–309.CrossRefGoogle Scholar
  66. Sørensen, C. K., Hovmøller, M. S., Leconte, M., Dedryver, F., & de Vallavieille-Pope, C. (2014). New races of Puccinia striiformis found in Europe reveal race specificity of long-term effective adult plant resistance in wheat. Phytopathology, 104(10), 1042–1051.PubMedCrossRefGoogle Scholar
  67. Strange, R. N., & Scott, P. R. (2005). Plant disease: a threat to global food security. Annual Review of Phytopathology, 43, 83–116.PubMedCrossRefGoogle Scholar
  68. Taira, T. (1982). The outbreak of the false smut in Hamadori district, Fukushima prefecture in 1980. Annual Report of the Society of Plant Protection of North Japan, 33, 41–42.Google Scholar
  69. Tauger, M. B. (2003). Entitlement, shortage and the 1943 Bengal famine: another look. Journal of Peasant Studies, 31, 45–72.CrossRefGoogle Scholar
  70. Teng, P.S., & Escaler, M. (2010). The case for urban food security: A Singapore perspective. NTS Perspectives, No. 4, Singapore. RSIS Centre for Non-Traditional Security (NTS) Studies.Google Scholar
  71. Wagacha, J. M., & Muthomi, J. W. (2008). Mycotoxin problem in Africa: current status, implications to food safety and health and possible management strategies. International Journal of Food Microbiology, 124(1), 1–12.PubMedCrossRefGoogle Scholar
  72. Wild, C. P., & Gong, Y. Y. (2010). Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis, 31(1), 71–82.PubMedCrossRefGoogle Scholar
  73. Windels, C. E. (2000). Economic and social impacts of fusarium head blight: changing farms and rural communities in the northern Great Plains. Phytopathology, 90(1), 17–21.PubMedCrossRefGoogle Scholar
  74. Xu, X. M. (2003). Effects of environmental conditions on the development of fusarium ear blight. European Journal of Plant Pathology, 109(7), 683–689.CrossRefGoogle Scholar
  75. Xu, X., & Nicholson, P. (2009). Community ecology of fungal pathogens causing wheat head blight. Annual Review of Phytopathology, 47, 83–103.PubMedCrossRefGoogle Scholar
  76. Zadoks, J. C. (1974). The role of epidemiology in modern phytopathology. Phytopathology, 64, 918–923.Google Scholar
  77. Zadoks, J. C. (2008). On the political economy of plant disease epidemics—capita selecta in historical epidemiology. Wageningen Academic: Wageningen.CrossRefGoogle Scholar
  78. Zadoks, J. C., & Bouwman, J. J. (1985). Epidemiology in Europe. In A. P. Roelfs & W. R. Bushnell (Eds.), The cereal rusts, Vol. II: Diseases, Distribution, Epidemiology, and Control (pp. 330–371). Orlando: Academic Press.Google Scholar
  79. Zadoks, J. C., & Schein, R. D. (1979). Epidemiology and plant disease management. New York: Oxford University Press.Google Scholar
  80. Zeigler, R. S., Leong, S. A., & Teng, P. S. (Eds.). (1994). Rice blast disease. Oxon, United Kingdom and International Rice Research Institute, Los Baños, Philippines: CAB International Wallingford.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht and International Society for Plant Pathology 2017

Authors and Affiliations

  • S. Savary
    • 1
  • S. Bregaglio
    • 2
  • L. Willocquet
    • 1
  • D. Gustafson
    • 3
  • D. Mason D’Croz
    • 4
  • A. Sparks
    • 5
  • N. Castilla
    • 6
  • A. Djurle
    • 7
  • C. Allinne
    • 8
    • 9
  • Mamta Sharma
    • 10
  • V. Rossi
    • 11
  • L. Amorim
    • 12
  • A. Bergamin
    • 12
  • J. Yuen
    • 7
  • P. Esker
    • 13
  • Neil McRoberts
    • 14
  • J. Avelino
    • 9
    • 15
  • E. Duveiller
    • 16
  • J. Koo
    • 4
  • K. Garrett
    • 17
  1. 1.AGIR, INRA, INPT, INP-EI PurpanUniversité de ToulouseCastanet TolosanFrance
  2. 2.Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Cassandra LaboratoryUniversità degli Studi di MilanoMilanItaly
  3. 3.Center for Integrated Modeling of Sustainable Agriculture and Nutrition Security (CIMSANS)ILSI Research FoundationWashingtonUSA
  4. 4.International Food Policy Research InstituteNW WashingtonUSA
  5. 5.Centre for Crop Health, Institute for Agriculture and the Environment, Research and Innovation DivisionUniversity of Southern QueenslandToowoombaAustralia
  6. 6.Plant Breeding, Genetics and BiotechnologyInternational Rice Research InstituteLos BañosPhilippines
  7. 7.Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
  8. 8.CIRAD/CATIE - CIRAD/UMR SystemSupAgroMontpellierFrance
  9. 9.CATIE, DIDTurrialbaCosta Rica
  10. 10.Legumes PathologyInternational Crops Research Institute for the Semi-Arid Tropics (ICRISAT)PatancheruIndia
  11. 11.Department of Sustainable Crop Production - DI.PRO.VE.S., Facoltà di Scienze agrarie, alimentari e ambientaliUniversità Cattolica del Sacro CuorePiacenzaItaly
  12. 12.Department of Plant PathologyUniversidade de São PauloPiracicabaBrazil
  13. 13.Centro para Investigaciones en Granos y SemillasUniversidad de Costa RicaSan JoséCosta Rica
  14. 14.Plant Pathology DepartmentUniversity of CaliforniaDavisUSA
  15. 15.CIRAD, UR106 Bioagresseurs: Analyse et maîtrise du risqueMontpellier Cedex 5France
  16. 16.AfricaRiceAbidjanCôte d’Ivoire
  17. 17.Institute of Food and Agricultural Sciences, Department of Plant PathologyUniversity of FloridaGainesvilleUSA

Personalised recommendations