Food Security

, Volume 9, Issue 1, pp 133–150 | Cite as

Sustainable intensification options for smallholder maize-based farming systems in sub-Saharan Africa

  • Klaus J. DroppelmannEmail author
  • Sieglinde S. Snapp
  • Stephen R. Waddington
Original Paper


Appropriate sustainable intensification (SI) of agriculture is required in Sub-Saharan Africa to meet the rising demand for food and protect resources. Agroforestry and green manures, diversification with grain legumes, conservation agriculture and integrated nutrient management with mineral and organic fertilizers are SI options widely promoted for maize-based African smallholder systems. To assess the potential of SI options to contribute to multiple ecosystem services in these systems, we evaluated 17 published multi-year and site studies, using radar charts to systematically measure provisioning services (annualized maize grain and protein yields) and supporting services (vegetative biomass, rain productivity and agronomic efficiency of N fertilizer) among the studies and across technologies. We frequently observed trade-offs amongst provisioning and supporting ecosystem services, especially in rotational systems where the addition of a grain legume increased maize response to fertilizer but reduced annualized maize grain yields. Consistent gains in maize grain yield and vegetative biomass, and protein yield and rain productivity were obtained with the application of N fertilizer across the studies. More efficient use of N fertilizer was associated with legume diversification, particularly intercrop systems, with large incremental yield gains (30–80 kg grain kg−1 N fertilizer) at low fertilizer rates (< 50 kg N ha−1). These systems produced substantial amounts of grain, protein, vegetative biomass and high resource use efficiency (1 to 5-fold increase relative to sole maize). In contrast, performance was inconsistent from conservation tillage practices. The highly variable performance of many options that contribute to SI suggests the importance of their adaptation to local conditions and support for farmer innovation, rather than prescribing the use of fixed SI interventions. Overall, for maize system intensification, we suggest expanding farmer access to multipurpose legumes (such as long-duration pigeon pea) that provide food and copious biomass, and to N fertilizer, along with the local adaptation of water-conserving tillage practices.


Ecosystem services Sustainable agriculture Crop diversification Grain legume Green manure Agroforestry Mineral fertilizer Conservation tillage 



We thank Emily May and Danielle Zoellner for help with literature citing and data preparation, as well as Regis Chikowo and five anonymous reviewers for their suggestions on drafts of this paper. A substantial part of the work was carried out while the lead author was affiliated with the International Food Policy Research Institute’s Malawi country program using funds from Irish Aid Malawi. Further financial support was provided by United States Agency for International Development - Feed the Future, through the Africa RISING project of the International Institute for Tropical Agriculture.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adjei-Nsiah, S., Kuyper, T. W., Leeuwis, C., Abekoe, M. K., & Giller, K. E. (2007). Evaluating sustainable and profitable cropping sequences with cassava and four legume crops: effects on soil fertility and maize yields in the forest/savannah transitional agro-ecological zone of Ghana. Field Crops Research, 103, 87–97.CrossRefGoogle Scholar
  2. Aguilera, Y., Diaz, M. F., Jimenez, T., Benitez, V., Herrera, T., Cuadrado, C., Martin-Pedrosa, M., & Martin-Cabrejas, M. A. (2013). Changes in nonnutritional factors and antioxidant activity during germination of nonconventional legumes. Journal of Agriculture and Food Chemistry, 61, 8120–8125.CrossRefGoogle Scholar
  3. Ajayi, O. C., Akinnifesi, F. K., Sileshi, G., & Chakeredza, S. (2007). Adoption of renewable soil fertility replenishment technologies in the southern African region: lessons learnt and the way forward. Natural Resources Forum, 31, 306–317.CrossRefGoogle Scholar
  4. Ajayi, O. C., Place, F., Akinnifesi, F. K., & Sileshi, G. W. (2011). Agricultural success from Africa: the case of fertilizer tree systems in southern Africa (Malawi, Tanzania, Mozambique, Zambia and Zimbabwe). International Journal of Agricultural Sustainability, 9, 129–136.CrossRefGoogle Scholar
  5. Akinnifesi, F. K., Makumba, W., & Kwesiga, F. R. (2006). Sustainable maize production using gliricidia/maize intercropping in southern Malawi. Experimental Agriculture, 42, 441–457.CrossRefGoogle Scholar
  6. Akinnifesi, F. K., Makumba, W., Sileshi, G., Ajayi, O. C., & Mweta, D. (2007). Synergistic effect of inorganic N and P fertilizers and organic inputs from Gliricidia sepium on productivity of intercropped maize in southern Malawi. Plant and Soil, 294, 203–217.CrossRefGoogle Scholar
  7. Andersson, J. A., & D’Souza, S. (2014). From adoption claims to understanding farmers and contexts: a literature review of conservation agriculture (CA) adoption among smallholder farmers in southern Africa. Agriculture, Ecosystems and Environment, 187, 116–132.CrossRefGoogle Scholar
  8. Andersson, J. A., & Giller, K. E. (2012). On heretics and God’s blanket: contested claims for conservation agriculture and the politics of its promotion in African smallholder farming. In J. Sumberg & J. Thompson (Eds.), Contested agronomy: agricultural research in a changing world (pp. 22–46). New York: Routledge, Taylor and Francis Group.Google Scholar
  9. Beddington, J. (2010). Food security: contributions from science to a new and greener revolution. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 365, 61–71.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Beedy, T. L., Snapp, S. S., Akinnifesi, F. K., & Sileshi, G. W. (2010). Impact of Gliricidia sepium intercropping on soil organic matter fractions in a maize-based cropping system. Agriculture, Ecosystems and Environment, 138, 139–146.CrossRefGoogle Scholar
  11. Boserup, E. (1965). The conditions of agricultural growth: the economics of agrarian change under population pressure. Chicago: Aldine.Google Scholar
  12. Brouder, S. M., & Gomez-Macpherson, H. (2014). The impact of conservation agriculture on smallholder agricultural yields: a scoping review of the evidence. Agriculture, Ecosystems and Environment, 187, 11–32.CrossRefGoogle Scholar
  13. Bwalya, M., Diallo, A. A., Phiri, E., & Hamadoun, M. (2009). Sustainable land and water management: the CAADP Pillar1 framework. Midrand: The Comprehensive Africa Agriculture Development Programme (CAADP).Google Scholar
  14. Cassman, K. G. (1999). Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences of the United States of America, 96, 5952–5959.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chamshama, S. A. O., Mugasha, A. G., Klovstad, A., Haveraaen, O., & Maliondo, S. M. S. (1998). Growth and yield of maize alley cropped with Leucaena leucocephala and Faidherbia albida in Morogoro, Tanzania. Agroforestry Systems, 40, 215–225.CrossRefGoogle Scholar
  16. Chartres, C. J., & Noble, A. (2015). Sustainable intensification: overcoming land and water constraints on food production. Food Security, 7(2), 235–245.CrossRefGoogle Scholar
  17. Chikowo, R., Mapfumo, P., Nyamugafata, P., Nyamadzawo, G., & Giller, K. E. (2003). Nitrate-N dynamics following improved fallows and maize root development in a Zimbabwean sandy clay loam. Agroforestry Systems, 59, 187–195.CrossRefGoogle Scholar
  18. Chikowo, R., Mapfumo, P., Nyamugafata, P., & Giller, K. E. (2004). Maize productivity and mineral N dynamics following different soil fertility management practices on a depleted sandy soil in Zimbabwe. Agriculture, Ecosystems and Environment, 102, 119–131.CrossRefGoogle Scholar
  19. Chirwa, P. W., Black, C. R., Ong, C. K., & Maghembe, J. A. (2003). Tree and crop productivity in gliricidia/maize/pigeonpea cropping systems in southern Malawi. Agroforestry Systems, 59, 265–277.CrossRefGoogle Scholar
  20. Chuma, E., & Hagmann, J. (1995). Summary of results and experiments from on-station and on-farm testing and development of conservation tillage systems in semi-arid Masvingo. In S. Twomlow, J. Ellis-Jones, J. Hagmann, & H. Loos (Eds.), Soil and water conservation for smallholder farmers in semi-arid Zimbabwe: transfers between research and extension (pp. 61–69). Harare: Integrated Rural Development Programme.Google Scholar
  21. Coe, R., Sinclair, F., & Barrios, E. (2014). Scaling up agroforestry requires research ‘in’ rather than ‘for’ development. Current Opinion in Environmental Sustainability, 6, 73–77.CrossRefGoogle Scholar
  22. Daily, G. C., & Matson, P. A. (2008). Ecosystem services: from theory to implementation. Proceedings of the National Academy of Sciences of the United States of America, 105, 9455–9456.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dixon, J. A., Gulliver, A., & Gibbon, D. (2001). Farming systems and poverty: improving farmers’ livelihoods in a changing world (summary). In M. Hall (Ed.), Farming systems and poverty: improving farmers’ livelihoods in a changing world (p. 407). Rome: FAO & World Bank.Google Scholar
  24. Dorward, A., & Chirwa, E. (2011). The Malawi agricultural input subsidy programme: 2005/06 to 2008/09. International Journal of Agricultural Sustainability, 9, 232–247.CrossRefGoogle Scholar
  25. Douxchamps, S., Rao, I. M., Peters, M., Van der Hoek, R., Schmidt, A., Martens, S., Polania, J., Mena, M., Binder, C. R., Scholl, R., Quintero, M., Kreuzer, M., Frossard, E., & Oberson, A. (2014). Farm-scale tradeoffs between legume use as forage versus green manure: the case of Canavalia brasiliensis. Agroecology and Sustainable Food Systems, 38, 25–45.CrossRefGoogle Scholar
  26. Drinkwater, L. E., Wagoner, P., & Sarrantonio, M. (1998). Legume-based cropping systems have reduced carbon and nitrogen losses. Nature, 396, 262–265.CrossRefGoogle Scholar
  27. Enfors, E., Barron, J., Makurira, H., Rockstrom, J., & Tumbo, S. (2011). Yield and soil system changes from conservation tillage in dryland farming: a case study from north eastern Tanzania. Agricultural Water Management, 98, 1687–1695.CrossRefGoogle Scholar
  28. Fischer, G., Shah, M., Tubiello, F. N., & van Velhuizen, H. (2005). Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990-2080. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 360, 2067–2083.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fofana, B., Breman, H., Carsky, R. J., Van Reuler, H., Tamelokpo, A. F., & Gnakpenou, D. (2004). Using mucuna and P fertilizer to increase maize grain yield and N fertilizer use efficiency in the coastal savanna of Togo. Nutrient Cycling in Agroecosystems, 68, 213–222.CrossRefGoogle Scholar
  30. Fowler, R., & Rockstrom, J. (2001). Conservation tillage for sustainable agriculture - an agrarian revolution gathers momentum in Africa. Soil Tillage Research, 61, 93–107.CrossRefGoogle Scholar
  31. Funk, C., Dettinger, M. D., Michaelsen, J. C., Verdin, J. P., Brown, M. E., Barlow, M., & Hoell, A. (2008). Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proceedings of the National Academy of Sciences of the United States of America, 105, 11081–11086.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Garrity, D. P., Akinnifesi, F. K., Ajayi, O. C., Weldesemayat, S. G., Mowo, J. G., Kalinganire, A., Larwanou, M., & Bayala, J. (2010). Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Security, 2, 197–214.CrossRefGoogle Scholar
  33. Gilbert, R. A. (2004). Best-bet legumes for smallholder maize-based cropping systems of Malawi. In M. Eilitta, J. Mureithi, & R. Derpsch (Eds.), Green manure/cover crop Systems of Smallholder Farmers: experiences from tropical and subtropical regions (pp. 153–174). Dordrecht: Kluwer.CrossRefGoogle Scholar
  34. Giller, K. E. (2001). Nitrogen fixation in tropical cropping systems. Wallingford: CABI.CrossRefGoogle Scholar
  35. Giller, K. E., Witter, E., Corbeels, M., & Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: the heretics’ view. Field Crops Research, 114, 23–34.CrossRefGoogle Scholar
  36. Giller, K. E., Murwira, M. S., Dhliwayo, D. K. C., Mafongoya, P. L., & Mpepereki, S. (2011a). Soyabeans and sustainable agriculture in southern Africa. International Journal of Agricultural Sustainability, 9, 50–58.CrossRefGoogle Scholar
  37. Giller, K. E., Tittonell, P., Rufino, M. C., van Wijk, M. T., Zingore, S., Mapfumo, P., Adjei-Nsiah, S., Herrero, M., Chikowo, R., Corbeels, M., Rowe, E. C., Baijukya, F., Mwijage, A., Smith, J., Yeboah, E., van der Burg, W. J., Sanogo, O. M., Misiko, M., de Ridder, N., Karanja, S., Kaizzi, C., K’Ungu, J., Mwale, M., Nwaga, D., Pacini, C., & Vanlauwe, B. (2011b). Communicating complexity: integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development. Agricultural Systems, 104, 191–203.CrossRefGoogle Scholar
  38. Giller, K. E., Andersson, J. A., Corbeels, M., Kirkegaard, J., Mortensen, D., Erenstein, O., & Vanlauwe, B. (2015). Beyond conservation agriculture. Frontiers in Plant Science. doi: 10.3389/fpls.2015.00870.PubMedPubMedCentralGoogle Scholar
  39. Glover, J. D., Reganold, J. P., & Cox, C. M. (2012). Plant perennials to save Africa’s soils. Nature, 489, 359–361.PubMedCrossRefGoogle Scholar
  40. Godfray, H. C. J. (2015). The debate over sustainable intensification. Food Security, 7(2), 199–208.CrossRefGoogle Scholar
  41. Gregorich, E. G., Drury, C. F., & Baldock, J. A. (2001). Changes in soil carbon under long-term maize in monoculture and legume-based rotation. Canadian Journal of Soil Science, 81, 21–31.CrossRefGoogle Scholar
  42. Guretzki, S., & Papenbrock, J. (2014). Characterization of Lablab purpureus regarding drought tolerance, trypsin inhibitor activity and cyanogenic potential for selection in breeding programmes. Journal of Agronomy and Crop Science, 200, 24–35.CrossRefGoogle Scholar
  43. Haggblade, S., & Tembo, G. (2003). Early evidence on conservation agriculture in Zambia. A paper prepared for the international workshop on "reconciling rural poverty and resource conservation: identifying relationships and remedies". Ithaca: Cornell University.Google Scholar
  44. Hobbs, P. R., Sayre, K., & Gupta, R. (2008). The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 363, 543–555.PubMedCrossRefGoogle Scholar
  45. Hussain, I., Olson, K., & Ebelhar, S. A. (1999). Impacts of tillage and no-till on production of maize and soybean on an eroded Illinois silt loam soil. Soil and Tillage Research, 52(1–2), 37–49.CrossRefGoogle Scholar
  46. Isaacs, K. B., Snapp, S. S., Chung, K., & Waldman, K. B. (2016). Assessing the value of diverse cropping systems under a new agricultural policy environment in Rwanda. Food Security, 8(3), 491–506.CrossRefGoogle Scholar
  47. Jensen, J. R., Bernhard, R. H., Hansen, S., McDonagh, J., Moberg, J. P., Nielsen, N. E., & Nordbo, E. (2003). Productivity in maize based cropping systems under various soil-water-nutrient management strategies in a semi-arid, alfisol environment in East Africa. Agricultural Water Management, 59, 217–237.CrossRefGoogle Scholar
  48. Kamanga, B. C. G., Kanyama-Phiri, G. Y., Waddington, S. R., Almekinders, C., & Giller, K. E. (2014). Evaluation and adoption of annual legumes by smallholder maize farmers for soil fertility maintenance and food diversity in Central Malawi. Food Security, 6(1), 45–59.CrossRefGoogle Scholar
  49. Kassam, A., Friedrich, T., Shaxson, F., & Pretty, J. (2009). The spread of conservation agriculture: justification, sustainability and uptake. International Journal of Agricultural Sustainability, 7, 292–320.CrossRefGoogle Scholar
  50. Keating, B. A., Carberry, P. S., Bindraban, P. S., Asseng, S., Meinke, H., & Dixon, J. (2010). Eco-efficient agriculture: concepts, challenges, and opportunities. Crop Science, 50, S109–S119.CrossRefGoogle Scholar
  51. Kibunja, C. N., Mwaura, F. B., Mugendi, D. N., Gicheru, P. T., Wamuongo, J. W., & Bationo, A. (2012). Strategies for maintenance and improvement of soil productivity under continuous maize and beans cropping system in the sub-humid highlands of Kenya: case study of the long-term trial at Kabete. In A. Bationo, B. Waswa, J. Kihara, I. Adolwa, B. Vanlauwe, & K. Saidou (Eds.), Lessons learned from long-term soil fertility management experiments in Africa (pp. 59–84). Dordrecht: Springer.CrossRefGoogle Scholar
  52. Kihara, J., Bationo, A., Mugendi, D. N., Martius, C., & Vlek, P. L. G. (2011). Conservation tillage, local organic resources and nitrogen fertilizer combinations affect maize productivity, soil structure and nutrient balances in semi-arid Kenya. Nutrient Cycling in Agroecosystems, 90, 213–225.CrossRefGoogle Scholar
  53. Kumwenda, J. D. T., Waddington, S. R., Snapp, S. S., Jones, R. B., & Blackie, M. J. (1996). Soil fertility management research for the maize cropping systems of smallholders in southern Africa: a review. Natural Resources Group Paper 96–02 (p. 35). Mexico DF: CIMMYT.Google Scholar
  54. Kurwakumire, N., Chikowo, R., Zingore, S., Mapfumo, P., Mtambanegwe, F., Johnston, A., & Snapp, S. S. (2015). Nutrient management strategies on heterogeneously fertile granitic-derived soils in sub-humid Zimbabwe. Agronomy Journal, 107, 1068–1076.CrossRefGoogle Scholar
  55. Li, L., Li, S. M., Sun, J. H., Zhou, L. L., Bao, X. G., Zhang, H. G., & Zhang, F. S. (2007). Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 104, 11192–11196.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Mafongoya, P. L., Bationo, A., Kihara, J., & Waswa, B. S. (2006). Appropriate technologies to replenish soil fertility in southern Africa. Nutrient Cycling in Agroecosystems, 76, 137–151.CrossRefGoogle Scholar
  57. Makumba, W., Akinnifesi, F. K., Janssen, B., & Oenema, O. (2007). Long-term impact of a gliricidia-maize intercropping system on carbon sequestration in southern Malawi. Agriculture, Ecosystems and Environment, 118, 237–243.CrossRefGoogle Scholar
  58. Materechera, S. A., & Mloza-Banda, H. R. (1997). Soil penetration resistance, root growth and yield of maize as influenced by tillage system on ridges in Malawi. Soil Tillage Research, 41, 13–24.CrossRefGoogle Scholar
  59. Matson, P. A., Parton, W. J., Power, A. G., & Swift, M. J. (1997). Agricultural intensification and ecosystem properties. Science, 277, 504–509.PubMedCrossRefGoogle Scholar
  60. Mhango, W. G., Snapp, S. S., & Phiri, G. Y. K. (2013). Opportunities and constraints to legume diversification for sustainable maize production on smallholder farms in Malawi. Renewable Agriculture and Food Systems, 28(3), 234–244.CrossRefGoogle Scholar
  61. Morris, M., Kelly, V. A., Kopicki, R. J., & Byerlee, D. (2007). Fertilizer use in African agriculture: lessons learned and good practice guidelines. Washington DC: The World Bank 144 p.CrossRefGoogle Scholar
  62. Munodawafa, A., & Zhou, N. (2008). Improving water utilization in maize production through conservation tillage systems in semi-arid Zimbabwe. Physics and Chemistry of the Earth, 33, 757–761.CrossRefGoogle Scholar
  63. Nair, P. K. R., & Nair, V. D. (2014). ‘solid–fluid–gas’: the state of knowledge on carbon-sequestration potential of agroforestry systems in Africa. Current Opinion in Environmental Sustainability, 6, 22–27.CrossRefGoogle Scholar
  64. Nandwa, S. M., & Bekunda, M. A. (1998). Research on nutrient flows and balances in east and southern Africa: state-of-the-art. Agriculture, Ecosystems and Environment, 71, 5–18.CrossRefGoogle Scholar
  65. Newton, A. C., Begg, G. S., & Swanston, J. S. (2009). Deployment of diversity for enhanced crop function. Annals of Applied Biology, 154, 309–322.CrossRefGoogle Scholar
  66. Nyagumbo, I., & Bationo, A. (2011). Exploring crop yield benefits of integrated water and nutrient management technologies in the desert margins of Africa: experiences from semi-arid Zimbabwe. In A. Bationo, B. Waswa, J. M. Okeyo, F. Maina, & J. M. Kihara (Eds.), Innovations as key to the green revolution in Africa (pp. 759–772). Netherlands: Springer.CrossRefGoogle Scholar
  67. Nyende, P., & Delve, R. J. (2004). Farmer participatory evaluation of legume cover crop and biomass transfer technologies for soil fertility improvement using farmer criteria, preference ranking and logit regression analysis. Experimental Agriculture, 40, 77–88.CrossRefGoogle Scholar
  68. Okalebo, J. R., Othieno, C. O., Woomer, P. L., Karanja, N. K., Semoka, J. R. M., Bekunda, M. A., Mugendi, D. N., Muasya, R. M., Bationo, A., & Mukhwana, E. J. (2006). Available technologies to replenish soil fertility in East Africa. Nutrient Cycling in Agroecosystems, 76, 153–170.CrossRefGoogle Scholar
  69. Palm, C. A., Gachengo, C. N., Delve, R. J., Cadisch, G., & Giller, K. E. (2001). Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database. Agriculture, Ecosystems & Environment, 83, 27–42.CrossRefGoogle Scholar
  70. Pauw, K., Thurlow, J., Bachu, M., & Van Seventer, D. E. (2011). The economic costs of extreme weather events: a hydrometeorological CGE analysis for Malawi. Environment and Development Economics, 16, 177–198.CrossRefGoogle Scholar
  71. Power, A. G. (2010). Ecosystem services and agriculture: tradeoffs and synergies. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 365, 2959–2971.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Pretty, J., & Bharucha, Z. P. (2014). Sustainable intensification in agricultural systems. Annals of Botany, 114(8), 1571–1596.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Pretty, J., Toulmin, C., & Williams, S. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 9, 5–24.CrossRefGoogle Scholar
  74. Pugalenthi, M., Vadivel, V., & Siddhuraju, P. (2005). Alternative food/feed perspectives of an underutilized legume Mucuna pruriens var. utilis – a review. Plant Foods for Human Nutrition, 60, 201–218.PubMedCrossRefGoogle Scholar
  75. Reynolds, T. W., Waddington, S. R., Anderson, C. L., Chew, A., True, Z., & Cullen, A. (2015). Environmental impacts and constraints associated with the production of major food crops in sub-Saharan Africa and South Asia. Food Security, 7(4), 795–822.CrossRefGoogle Scholar
  76. Rusinamhodzi, L., Corbeels, M., van Wijk, M. T., Rufino, M. C., Nyamangara, J., & Giller, K. E. (2011). A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agronomy for Sustainable Development, 31, 657–673.CrossRefGoogle Scholar
  77. Sanchez, P. A. (2002). Soil fertility and hunger in Africa. Science, 295, 2019–2020.PubMedCrossRefGoogle Scholar
  78. Schlecht, E., Buerkert, A., Tielkes, E., & Bationo, A. (2006). A critical analysis of challenges and opportunities for soil fertility restoration in Sudano-Sahelian West Africa. Nutrient Cycling in Agroecosystems, 76, 109–136.CrossRefGoogle Scholar
  79. Shennan, C. (2008). Biotic interactions, ecological knowledge and agriculture. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 363, 717–739.PubMedCrossRefGoogle Scholar
  80. Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world. 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3(3), 307–327.CrossRefGoogle Scholar
  81. Shumba, E. M., Waddington, S. R., & Rukuni, M. (1992). Tine tillage, with atrazine weed control, to permit earlier planting of maize by smallholder farmers in Zimbabwe. Experimental Agriculture, 28, 443–452.CrossRefGoogle Scholar
  82. Smith, L., Alderman, H., & Aduayom, D. (2006). Food insecurity in sub-Saharan Africa: new estimates from household expenditure surveys. Washington DC: International Food Policy Research Institute.Google Scholar
  83. Smith, R. G., Gareau, T. P., Mortensen, D. A., Curran, W. S., & Barbercheck, M. E. (2011). Assessing and visualizing agricultural management practices: a multivariable hands-on approach for education and extension. Weed Technology, 25(4), 680–687.CrossRefGoogle Scholar
  84. Snapp, S. S. (1998). Soil nutrient status of smallholder farms in Malawi. Communications in Soil Science and Plant Analysis, 29, 2571–2588.CrossRefGoogle Scholar
  85. Snapp, S. S., & Silim, S. N. (2002). Farmer preferences and legume intensification for low nutrient environments. Plant and Soil, 245, 181–192.CrossRefGoogle Scholar
  86. Snapp, S. S., Mafongoya, P. L., & Waddington, S. (1998). Organic matter technologies for integrated nutrient management in smallholder cropping systems of southern Africa. Agriculture, Ecosystems and Environment, 71, 185–200.CrossRefGoogle Scholar
  87. Snapp, S., Kanyama-Phiri, G., Kamanga, B., Gilbert, R., & Wellard, K. (2002a). Farmer and researcher partnerships in Malawi: developing soil fertility technologies for the near-term and far-term. Experimental Agriculture, 38, 411–431.CrossRefGoogle Scholar
  88. Snapp, S. S., Rohrbach, D. D., Simtowe, F., & Freeman, H. A. (2002b). Sustainable soil management options for Malawi: can smallholder farmers grow more legumes? Agriculture, Ecosystems and Environment, 91, 159–174.CrossRefGoogle Scholar
  89. Snapp, S. S., Blackie, M. J., Gilbert, R. A., Bezner-Kerr, R., & Kanyama-Phiri, G. Y. (2010). Biodiversity can support a greener revolution in Africa. Proceedings of the National Academy of Sciences of the United States of America, 107, 20840–20845.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Stroosnijder, L. (2007). Rainfall and Land Degradation. In Climate and land degradation. Berlin: Springer Berlin Heidelberg, pp. 167–195. Available at:
  91. Thierfelder, C., & Wall, P. C. (2009). Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil and Tillage Research, 105(2), 217–227.CrossRefGoogle Scholar
  92. Thierfelder, C., & Wall, P. C. (2012). Effects of conservation agriculture on soil quality and productivity in contrasting agro-ecological environments of Zimbabwe. Soil Use Management, 28, 209–220.CrossRefGoogle Scholar
  93. Thierfelder, C., Cheesman, S., & Rusinamhodzi, L. (2012). A comparative analysis of conservation agriculture systems: benefits and challenges of rotations and intercropping in Zimbabwe. Field Crops Research, 137, 237–250.CrossRefGoogle Scholar
  94. Thierfelder, C., Chisui, J. L., Gama, M., Cheesman, S., Jere, Z. D., Bunderson, W. T., Eash, N. S., & Rusinamhodzi, L. (2013a). Maize-based conservation agriculture systems in Malawi: long-term trends in productivity. Field Crops Research, 142, 47–57.CrossRefGoogle Scholar
  95. Thierfelder, C., Mwila, M., & Rusinamhodzi, L. (2013b). Conservation agriculture in eastern and southern provinces of Zambia: long-term effects on soil quality and maize productivity. Soil Tillage Research, 126, 246–258.CrossRefGoogle Scholar
  96. Tittonell, P., Vanlauwe, B., Corbeels, M., & Giller, K. E. (2008). Yield gaps, nutrient use efficiencies and response to fertilizers by maize across heterogeneous smallholder farms of western Kenya. Plant and Soil, 313, 19–37.CrossRefGoogle Scholar
  97. Twomlow, S., Rohrbach, D., Dimes, J., Rusike, J., Mupangwa, W., Ncube, B., Hove, L., Moyo, M., Mashingaidze, N., & Mahposa, P. (2010). Micro-dosing as a pathway to Africa’s green revolution: evidence from broad-scale on-farm trials. Nutrient Cycling in Agroecosystems, 88, 3–15.CrossRefGoogle Scholar
  98. Vanlauwe, B., Kihara, J., Chivenge, P., Pypers, P., Coe, R., & Six, J. (2011). Agronomic use efficiency of N fertilizer in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Plant and Soil, 339, 35–50.CrossRefGoogle Scholar
  99. Vanlauwe, B., Wendt, J., Giller, K. E., Corbeels, M., Gerard, B., & Nolte, C. (2014). A fourth principle is required to define conservation agriculture in sub-Saharan Africa: the appropriate use of fertilizer to enhance crop productivity. Field Crops Research, 155, 10–13.CrossRefGoogle Scholar
  100. Versteeg, M. N., Amadji, F., Eteka, A., Gogan, A., & Koudokpon, V. (1998). Farmers’ adoptability of mucuna fallowing and agroforestry technologies in the coastal savanna of Benin. Agricultural Systems, 56, 269–287.CrossRefGoogle Scholar
  101. Vissoh, P., Manyong, V. M., Carsky, J. R., Osei-Bonsu, P., & Galiba, M. (1998). Experiences with macuna in West Africa. In D. Buckles, A. Eteka, O. Osiname, M. Galiba, & G. Galiano (Eds.), Cover crops in West Africa contributing to sustainable agriculture. Ottawa: IDRC IITA, Ibadan; SG2000, Cotonou.Google Scholar
  102. Waddington, S.R., Sakala, W.D., & Mekuria, M. (2004). Progress in lifting soil fertility in Southern Africa. Proceedings of the 4th International Crop Science Congress, 26 September - 1 October, 2004. ICSC, Brisbane, Australia.
  103. Waddington, S. R., Mekuria, M., Siziba, S., & Karigwindi, J. (2007a). Long-term yield sustainability and financial returns from grain legume-maize intercrops on a sandy soil in subhumid north Central Zimbabwe. Experimental Agriculture, 43(4), 489–503.CrossRefGoogle Scholar
  104. Waddington, S. R., Karigwindi, J., & Chifamba, J. (2007b). The sustainability of a groundnut plus maize rotation over 12 years on smallholder farms in the sub-humid zone of Zimbabwe. African Journal of Agricultural Research, 2, 342–348.Google Scholar
  105. Waddington, S. R., Li, X., Dixon, J., Hyman, G., & de Vicente, M. C. (2010). Getting the focus right: production constraints for six major food crops in Asian and African farming systems. Food Security, 2(1), 27–48.CrossRefGoogle Scholar
  106. Wopereis, M. C. S., Tamélokpo, A., Ezui, K., Gnakpénou, D., Fofana, B., & Breman, H. (2006). Mineral fertilizer management of maize on farmer fields differing in organic inputs in the west African savanna. Field Crops Research, 96(2), 355–362.CrossRefGoogle Scholar
  107. Zingore, S., Murwira, H. K., Delve, R. J., & Giller, K. E. (2007). Soil type, management history and current resource allocation: three dimensions regulating variability in crop productivity on African smallholder farms. Field Crops Research, 101, 296–305.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht and International Society for Plant Pathology 2017

Authors and Affiliations

  • Klaus J. Droppelmann
    • 1
    Email author
  • Sieglinde S. Snapp
    • 2
  • Stephen R. Waddington
    • 3
  1. 1.PICOTEAMJohannesburgSouth Africa
  2. 2.Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingUSA
  3. 3.CuernavacaMexico

Personalised recommendations