Food Security

, Volume 7, Issue 6, pp 1291–1297 | Cite as

Sustainability spaces for complex agri-food systems

  • Stephen Whitfield
  • Tim G. Benton
  • Martin Dallimer
  • Les G. Firbank
  • Guy M. Poppy
  • Susannah M. Sallu
  • Lindsay C. Stringer
Original Paper

Abstract

As a result of the complexity of agri-food systems, popularly-supported ‘win-win’ solutions rarely result in wholly satisfactory outcomes. We draw on documented cases of the introduction of agricultural input subsidies; the intensification of livestock production; and the development of genetically modified crop varieties as examples of agri-food systems in which there are multiple interconnected sustainability priorities and inevitable conflicts. Generic or narrowly conceived goals may not fully reflect the multiple and conflicting dimensions of sustainability that are relevant to such cases. There is a need to advance established multiple-win agendas, such as sustainable intensification and climate smart agriculture, to more fully reflect this complexity. We propose the use of the sustainability space concept for defining and monitoring sustainability priorities that might become the basis for effective management of complex systems. We further outline the challenge of defining and monitoring these priorities, which will require carefully designed, interdisciplinary and participatory research agendas.

Keywords

Sustainability Agri-food systems Complexity 

References

  1. Ashton, J. R., Middleton, J., & Lang, T. (2014). Open letter to prime minister David Cameron on food poverty in the UK. The Lancet, 383, 1631.CrossRefGoogle Scholar
  2. Childers, D. L., Corman, J., Edwards, M., & Elser, J. J. (2011). Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. BioScience, 61, 117–124.CrossRefGoogle Scholar
  3. Chinsinga, B. (2011). Seeds and subsidies: the political economy of input programmes in Malawi. IDS Bulletin, 42, 59–68.CrossRefGoogle Scholar
  4. Conway, G. (2000). Genetically modified crops: risks and promise. Conservation Ecology, 4, 2.Google Scholar
  5. Darnhofer, I., Gibbon, D., & Dedieu, B. (2012). Farming Systems Research: an Approach to Inquiry. London: Springer.Google Scholar
  6. Denning, G., Kabambe, P., Sanchez, P., Malik, A., Flor, R., Harawa, R., Nkhoma, P., Zamba, C., Banda, C., Magombo, C., Keating, M., Wangila, J., & Sachs, J. (2009). Input subsidies to improve smallholder maize productivity in Malawi: toward an African green revolution. PLoS Biology, 7, e23.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Dorward, A., & Chirwa, E. (2011). The Malawi agricultural input subsidy programme: 2005/06 to 2008/09. International Journal of Agricultural Sustainability, 9, 232–247.CrossRefGoogle Scholar
  8. Folke, C. (2006). Resilience: the emergence of a perspective for social-ecological systems analyses. Global Environmental Change, 16, 253–267.CrossRefGoogle Scholar
  9. Godfray, H. C. J. (2015). The debate over sustainable intensification. Food Security, 1–10.Google Scholar
  10. Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327, 812–818.PubMedCrossRefGoogle Scholar
  11. Goodman, R. E., Vieths, S., Sampson, H. A., Hill, D., Ebisawa, M., Taylor, S. L., & Van Ree, R. (2008). Allergenicity assessment of genetically modified crops[mdash]what makes sense? Nature Biotechnology, 26, 73–81.PubMedCrossRefGoogle Scholar
  12. Harvey, F. (2013). UK needs ‘mega farms’ to keep food prices down, say experts. The Guardian.Google Scholar
  13. Jayne, T. S., Govereh, J., Mwanaumo, A., Nyoro, J. K., & Chapoto, A. (2002). False promise or false premise? The experience of food and input market reform in Eastern and Southern Africa. World Development, 30, 1967–1985.CrossRefGoogle Scholar
  14. Mouysset, L., Doyen, L., & Jiguet, F. (2014). From population viability analysis to coviability of farmland biodiversity and agriculture. Conservation Biology, 28, 187–201.PubMedCrossRefGoogle Scholar
  15. Neufeldt, H., Jahn, M., Campbell, B. M., Beddington, J. R., Declerck, F., de Pinto, A., Gulledge, J., Hellin, J., Herrero, M., & Jarvis, A. (2013). Beyond climate-smart agriculture: toward safe operating spaces for global food systems. Agriculture & Food Security, 2, 12.CrossRefGoogle Scholar
  16. Petersen, B., & Snapp, S. (2015). What is sustainable intensification? Views from experts. Land Use Policy, 46, 1–10.CrossRefGoogle Scholar
  17. Pretty, J. (2008). Agricultural sustainability: concepts, principles and evidence. Philosophical Transactions of the Royal Society, B: Biological Sciences, 363, 447–465.PubMedCentralCrossRefGoogle Scholar
  18. Raworth, K. (2012). A safe and just space for humanity: can we live within the doughnut. Oxfam Policy and Practice: Climate Change and Resilience, 8, 1–26.Google Scholar
  19. Reed, M. S. (2008). Stakeholder participation for environmental management: a literature review. Biological Conservation, 141, 2417–2431.CrossRefGoogle Scholar
  20. Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E. F., Lenton, T. M., Scheffer, M., Folke, C., & Schellnhuber, H. J. (2009). A safe operating space for humanity. Nature, 461, 472–475.PubMedCrossRefGoogle Scholar
  21. Saul, H. (2013). Campaigners warn against rise of the ‘mega-farms’: could massive pig, fish and dairy units harm the environment? The Independent.Google Scholar
  22. Whitfield, S. (2016). Adapting to Climate Uncertainty in African Agriculture: Narratives and Knowledge Politics. London: Routledge.Google Scholar
  23. Whitfield, S., & Reed, M. (2011). Participatory environmental assessment in drylands: introducing a new approach. Journal of Arid Environments, 77, 1–10.CrossRefGoogle Scholar
  24. Whitfield, S., Dixon, J. L., Mulenga, B. P., & Ngoma, H. (2015). Conceptualising farming systems for agricultural development research: cases from Eastern and Southern Africa. Agricultural Systems, 133, 54–62.CrossRefGoogle Scholar
  25. Zulu, P., Kalinda, T., & Tembo, G. (2014). Effects of the maize input subsidy program on groundnuts production in Zambia. Journal of Agricultural Science, 6, p253.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht and International Society for Plant Pathology 2015

Authors and Affiliations

  • Stephen Whitfield
    • 1
  • Tim G. Benton
    • 2
  • Martin Dallimer
    • 1
  • Les G. Firbank
    • 2
  • Guy M. Poppy
    • 3
  • Susannah M. Sallu
    • 1
  • Lindsay C. Stringer
    • 1
  1. 1.Sustainability Research Institute, School of Earth and EnvironmentUniversity of LeedsLeedsUK
  2. 2.School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
  3. 3.Centre for Biological SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations