Food Security

, Volume 6, Issue 3, pp 369–384 | Cite as

Botanical pesticide production, trade and regulatory mechanisms in sub-Saharan Africa: making a case for plant-based pesticidal products

  • P. SolaEmail author
  • B. M. Mvumi
  • J. O. Ogendo
  • O. Mponda
  • J. F. Kamanula
  • S. P. Nyirenda
  • S. R. Belmain
  • P. C. Stevenson
Original Paper


Pesticides are the major technology used in the management of field and postharvest losses due to pests. There is growing demand for effective alternatives that present low health risks and conserve ecosystems and biological diversity. Pesticidal plants are increasingly used as alternatives where synthetic products are unaffordable, have limited availability or are ineffective. Plant materials, however, are often used inefficiently and their effective use requires optimisation. In Africa wide-scale uptake of pesticidal plants remains limited despite the success of pyrethrum in some countries and other pesticidal plant products in China and India. This is mainly due to lack of data on efficacy and safety, inconsistent efficacy of plant products, the prohibitive cost of registration, and an inadequately developed conventional pesticides sector. Globally, the demand for botanicals is poised to grow due to an increasing shift in consumer demand for safe food, increasing organic farming, lobbying by environmentalists and the increasing pressure from new regulations on internationally traded foods in Europe. These demands can only be met by formalising production, marketing and use of pesticidal plants. This has to be supported by friendly registration procedures, sustainable forest management, propagation and cultivation of pesticidal plants. This paper presents a critical review of the enabling environment required for wide-scale adoption and commercialisation of botanical pesticides in sub-Saharan Africa. We conclude that regulations and protocols for production, marketing and trade need to be reviewed to facilitate the development of the botanicals sector in Africa.


Botanical insecticides Pesticidal plants Pesticide industry Pesticide legislation 



This work was funded by the European Commission’s European Development Fund ACP S&T Programme grants FED/2009/217064 (ADAPPT) and FED /2013/329272 (OPTIONs). The authors would like to express their gratitude to all anonymous reviewers who took time to provide invaluable comments on the drafts of this paper.


  1. AGENDA (2006). Pesticide and poverty: a case study on trade and utilization of pesticides in Tanzania: Implication to Stockpiling; Final Report, Dar es Salaam, Accessed 18 Feb 2014.
  2. Alam, G. (2000). A Study of Biopesticides and Biofertilisers in Haryana, India. Gatekeeper Series no. 93 IIED, London. Accessed 18 Feb 2014.
  3. Amoabeng, B. W., Gurr, G. M., Gitau, C. W., Nicol, H. I., Munyakazi, L., & Stevenson, P. C. (2013). Tri-trophic insecticidal effects of African plants against cabbage pests. PLoS One, 8, e78651.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Amoabeng, B. W., Gurr, G. M., Gitau, C. W., Nicol, H. I., Munyakazi, L., & Stevenson, P. C. (2014). Cost: benefit analysis of botanical insecticide use in cabbage: implications for smallholder farmers in developing countries. Crop Protection, 57, 71–76.CrossRefGoogle Scholar
  5. Bambawale, O. M., & Bhagat, S. (2012). Registration related issues in effective use of biopesticides in pest management. In O. Koul, G. S. Dhaliwal, S. Khokhar, & R. Singh (Eds.), Biopesticides in environment and food security: Issuers and strategies (pp. 265–285). Jodhpur: Scientific Publishers.Google Scholar
  6. Belmain, S. R., & Stevenson, P. C. (2001). Ethnobotanicals in Ghana: reviving and modernising an age-old practise. Pesticide Outlook, 6, 233–238.Google Scholar
  7. Belmain, S. R., Neal, G. E., Ray, D. E., & Golob, P. (2001). Insecticidal and vertebrate toxicity associated with enthobotanicals used as post-harvest protectants in Ghana. Food and Chemical Toxicology, 39, 287–291.PubMedCrossRefGoogle Scholar
  8. Belmain, S. R., Amoah, B. A., Nyirenda, S. P., Kamanula, J. F., & Stevenson, P. C. (2012). Highly variable insect control efficacy of Tephrosia vogelii chemotypes. Journal of Agricultural and Food Chemistry, 60, 10055–10063.PubMedCrossRefGoogle Scholar
  9. Bennett, B., Cooper, J., & Dobson, H. (2010). We know where the shoe pinches: a case study based analysis of the social benefits of pesticides. Outlook on Agriculture, 39, 79–87.CrossRefGoogle Scholar
  10. Berger, A. (1994). Using natural pesticides: Current and future perspectives: a report for the Plant Protection Improvement Programme in Botswana, Zambia and Tanzania. Swedish University of Agricultural Sciences. Accessed 6 March 2014.
  11. Bhushan, C., Bhardwaj, A., & Misra, S. S. (2013). State of Pesticide Regulations in India, Centre for Science and Environment, New Delhi. 18 February 2014.
  12. Centre for Science and Environment (2011). Pesticide Management Bill 2008. Centre of Science and Environment, New Delhi. Accessed 6 March 2014.
  13. Chandler, D., Bailey, A. S., Tatchell, G. M., Davidson, G., Greaves, J., & Gran, W. P. (2011). The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society, B: Biological Sciences, 366, 1987–1998.PubMedCentralCrossRefGoogle Scholar
  14. Chikukura, L., Mvumi, B. M., Chikonzo, R., & Chenzara, C. (2011). Evaluation of selected indigenous pesticidal plant powders against stored maize and cowpeas insect pests. African Crop Science Conference Proceedings, 10, 169–171.Google Scholar
  15. Cobbinah, J. R., Moss, C., Golob, P., & Belmain, S. R. (1999). Conducting ethnobotanical surveys: an example from Ghana on plants used for the protection of stored cereals and pulses. NRI Bulletin no. 77, Chatham, Natural Resources Institute.Google Scholar
  16. Cooper, J., & Dobson, H. (2007). The benefits of pesticides to mankind and the environment. Crop Protection, 26, 1337–1348.CrossRefGoogle Scholar
  17. Devlin, J. F., & Zettel, T. (1999). Ecoagriculture: Initiatives in Eastern and Southern Africa. Harare: Weaver Press.Google Scholar
  18. EC (2010). Thematic Strategy on Sustainable Use of Pesticides, European Union, Brussels Accessed 11 Nov 2012.
  19. Eilenberg, J. (2006). Concepts and visions of biological control. In J. Eilenberg, H. M. T. Hokkanen (Eds.), An ecological and societal approach to biological control, (pp. 1–13). Springer Series: Progress in Biological Control.Google Scholar
  20. FAO (2005). International Code of Conduct on the Distribution and Use of Pesticides. Food Agriculture Organisation of the United Nations Rome. Accessed 18 Feb 2014.
  21. FAO (2012). FAOSTAT Database on Pesticides trade. Food Agriculture Organisation of the United Nations, Rome. Accessed 18 Feb 2014.
  22. Foerster, P., Varela, A., & Roth, J. (2001). Best practices for the Introduction of Non-Synthetic Pesticides in Selected Cropping Systems: Experiences gained from selected crops in Developing Countries, GTZ, Eschborn, 152 pp. Accessed 18 Feb 2014.
  23. Gadzirayi, C. T., Mutandwa, E., Mwale, M., & Chindundu, T. (2009). Utilization of Tephrosia vogelii in controlling ticks in dairy cows by small-scale commercial farmers in Zimbabwe. African Journal of Biotechnology, 8, 4134–4136.Google Scholar
  24. Government of Ghana (2004). Pesticides Control and Management Act, 1996, ACT 528. Government of the Republic of Ghana. Accessed 18 Feb 2014.
  25. Government of Kenya (2013). The Pyrethrum Act, 2013, Special Issue. Government of the Republic of Kenya Government Printer, Nairobi Accessed 18 Feb 2014.
  26. Government of Tanzania (1997). The Plant Protection Act No. 27. Vol. 78, Government of the United Republic of Tanzania, Government Printer, Dar es Salaam,_1997.pdf. Accessed 18 Feb 2014.
  27. Grange, N., & Ahmed, S. (1988). Handbook of plants with pest control properties. New York: John Wileys & Sons. 470 pp.Google Scholar
  28. Grzywacz, D., Rossbach, A., Rauf, A., Russell, D. A., Srinivasan, R., & Shelton, A. M. (2010). Current control methods for diamondback moth and other brassica insect pests and the prospects for improved management with lepidopteran-resistant Bt vegetable brassicas in Asia and Africa. Crop Protection, 29, 68–79.CrossRefGoogle Scholar
  29. Guillon, M. (2004). Current world situation on acceptance and marketing of biological control agents (BCAS) International Biocontrol Manufacturers’ Association. Accessed 18 Feb 2014.
  30. Gupta, S., & Dikshit, A. K. (2010). Biopesticides: an eco-friendly approach for pest control. Journal of Biopesticides, 3, 186–188.Google Scholar
  31. Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51, 45–66.PubMedCrossRefGoogle Scholar
  32. Isman, M. B. (2008). Perspective botanical insecticides: for richer, for poorer. Pest Management Science, 64, 8–11.PubMedCrossRefGoogle Scholar
  33. Jayasekera, T., Stevenson, P. C., Hall, D. R., & Belmain, S. R. (2005). Effect of volatile constituents from Securidaca longependunculata on stored grain insect pests. Journal of Chemical Ecology, 31, 303–313.CrossRefGoogle Scholar
  34. Kamanula, J. F., Sileshi, G. W., Belmain, S. R., Sola, P., Mvumi, B. M., Nyirenda, G. K. C., et al. (2011). Farmers’ insect pest management practices and pesticidal plant use in the protection of stored maize and beans in Southern Africa. International Journal of Pest Management, 57, 41–49.CrossRefGoogle Scholar
  35. Katsvanga, C. A. T., & Chigwaza, S. (2004). Effectiveness of natural herbs, fever tea (Lippia javanica) and Mexican marigold (Tagetes minuta) as substitutes to synthetic pesticides in controlling aphid species (Brevicoryne brassica) on cabbage (Brassica capitata). Tropical and Subtropical Agroecosystems, 4, 101–106.Google Scholar
  36. Khater, H. F. (2012). Prospects of botanical biopesticides in insect pest management. Journal of Applied Pharmaceutical Science, 2, 244–259.Google Scholar
  37. Koul, O., Singh, G., Singh, R., Singh, J., Daniewski, W. M., & Berlozecki, S. (2004). Bioefficacy and mode-of-action of some limonoids of salannin group from Azadirachta indica A. Juss and their role in a multicomponent system against lepidopteran larvae. Journal of Biosciences, 29, 409–416.PubMedCrossRefGoogle Scholar
  38. Kumar, S. (2012). Biopesticides: a need for food and environmental safety. Journal of Biofertilisers and Biopesticides, 3, 1000e107.Google Scholar
  39. Leng, P., Zhang, Z., Pan, G., & Zhao, M. (2011). Applications and development trends in biopesticides. African Journal of Biotechnology, 10, 19864–19873.Google Scholar
  40. Madzimure, J., Nyahangare, E. T., Hamudikuwanda, H., Hove, T., Stevenson, P. C., & Belmain, S. R. (2011). Acaricidal efficacy against cattle ticks and acute oral toxicity of Lippia javanica (Burm F.). Tropical Animal Health and Production, 43, 481–489.PubMedCrossRefGoogle Scholar
  41. Madzimure, J., Nyahangare, E. T., Hamudikuwanda, H., Hove, T., Belmain, S. R., Stevenson, P. C., et al. (2013). Efficacy of Strychnos spinosa (Lam.) and Solanum incanum L. aqueous fruit extracts against cattle ticks. Tropical Animal Health and Production, 45, 1341–1347.PubMedCrossRefGoogle Scholar
  42. Mafongoya, P. L., & Kuntashula, E. (2005). Participatory evaluation of Tephrosia species and provenances for soil fertility improvement and other uses using farmer criteria in Eastern Zambia. Experimental Agriculture, 41, 69–80.CrossRefGoogle Scholar
  43. Mazid, S., Kalita, J., & Rajkhowa, R. (2011). A review on the use of biopesticides in insect pest management paper subtitle: biopesticides—a safe alternative to chemical control of pests. International Journal of Science and Advanced Technology, 1, 169–178.Google Scholar
  44. McLaughlin Gormley King Company (2010). About Pyrethrum. McLaughlin Gormley King Company Accessed 18 Feb 2014.
  45. Mehrdad, E. (2004). Problems facing the flower industry. In: M. N. Wabule, P. N. Ngaruiya, F. M. Kimmins, P. J. Silverside (Eds.), Registration for biocontrol agents in Kenya: Proceedings of the PCPB/KARI/DFID CPP workshop (pp. 7–8). Nakuru, Kenya, 14–16 May 2003.Google Scholar
  46. Menzler-Hokkanen, I. (2006). Socioeconomic significance of biological control. In J. Eilenberg & H. M. T. Hokkanen (Eds.), An ecological and societal approach to biological control (pp. 13–15). New York: Springer.CrossRefGoogle Scholar
  47. Minja, E. M., Shanower, T. G., Songa, J. M., Ongaro, J. M., Kawonga, W. T., Mviha, P. J., et al. (1999). Studies of pigeon pea insect pests and their management in Kenya, Malawi, Tanzania and Uganda. African Crop Science Journal, 7, 59–69.Google Scholar
  48. Moyo, M., Nyakudya, I. W., Katsvanga, C. A. T., & Tafirei, R. (2006). Efficacy of the botanical pesticides, Derris elliptica, Capsicum frutescens and Tagetes minuta for the control of Brevicoryne brassicae in vegetables. Journal of Sustainable Development in Africa, 8, 216–222.Google Scholar
  49. Mudimu, G. D., Chigume, S., & Chikanda, M. (1995). Pesticide Use and Policies in Zimbabwe: Current Perspectives and Emerging Issues for Research. Publication Series No. 2 Pesticide Policy Project Hannover. Accessed 6 Mar 2014.
  50. Murungi, L. K., Nyende, A., Wesonga, J., Masinde, P., & Knapp, M. (2010). Effect of African nightshade species (Solanaceae) on developmental time and life table parameters of Tetranychus evansi (Acari: Tetranychidae). Experimental and Applied Acarology, 52, 19–27.PubMedCrossRefGoogle Scholar
  51. Murungweni, C., Andersson, J. A., van Wijk, M. T., Gwitira, I., & Giller, K. E. (2012). Zhombwe (Neorautanenia brachypus (Harms) C.A.Sm.)—a recent discovery for mitigating effects of drought on livestock in semi-arid areas of Southern Africa. Ethnobotany Research & Applications, 10, 199–212.Google Scholar
  52. Muzemu, S., Mvumi, B. M., Nyirenda, S. P. M., Sileshi, G. W., Sola, P., Kamanula, J. F., et al. (2012). Pesticidal effects of indigenous plants extracts against rape aphids and tomato red spider mites. African Crop Science Conference Proceedings, 10, 169–171.Google Scholar
  53. Mvumi, B. M., Golob, P., Stathers T. E., & Giga, D. P. (2003) Insect population dynamics and grain damage in small-farm stores in Zimbabwe with particular reference to Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae). In: P. F. Credland, D. M. Armitage, C. H. Bell, P. M. Cogan, & E. Highley (Eds.), Advances in stored product protection. Proceedings of the 8th International Working Conference on Stored Product Protection, York, UK. 22–26 July 2002, (pp. 151–168). Wallingford: CABI Publishing.Google Scholar
  54. Mwale, M., Tangwara, R., Mapiye, C., Mupangwa, J. F., Madzinga, E., Mapurisa, C., et al. (2006). Awareness and adoption of Tephrosia vogelii and Nasturtium trapaeolum for the control of cattle parasites by the smallholder farmers in Upper Muzarabani District of Zimbabwe. Journal of Sustainable Development in Africa, 8, 198–202.Google Scholar
  55. Natural Resources Institute (2010). Final technical report: Southern African Pesticidal Plants (SAPP) Project. Caesalpinioid woodlands of Southern Africa: optimising the use of pesticidal plants. Accessed 18 Feb 2014.
  56. Nyahangare, E. T., Hove, T., Mvumi, B. M., Hamudikuwanda, H., Belmain, S. R., Madzimure, J., et al. (2012). Acute mammalian toxicity of four pesticidal. Journal of Medicinal Plant Research, 6, 2674–2680.Google Scholar
  57. Nyirenda, S. P., Sileshi, G. W., Belmain, S. R., Kamanula, J. F., Mvumi, B. M., Sola, P., et al. (2011). Farmers’ ethno-ecological knowledge of vegetable pests and pesticidal plant use in Malawi and Zambia. African Journal of Agricultural Research, 6, 1525–1537.Google Scholar
  58. O’Brien, K. P., Franjevic, S., &Jones, J. (2009). Green chemistry and sustainable agriculture: The role of biopesticides. Advancing Green Chemistry. Accessed 18 Feb 2014.
  59. Omiti, J., Waiyaki, N., Otieno, D., & Chele, A. (2007). Policy and Institutional Interventions to Revitalize Kenya’s Pyrethrum Industry. Discussion Paper No. 68. Kenya Institute for Public Policy Research and Analysis (KIPPRA). Accessed 18 Feb 2014.
  60. Page, S. L. J. (1997). Natural pest management in Zimbabwe. LEISA Magazine, 13(4), 12–13. Accessed 18 Feb 2014.Google Scholar
  61. Parmar, B. S. (2010). Biopesticides: an indian overview. Pesticide Research Journal, 22, 93–110.Google Scholar
  62. PCPB (2009). Product registration: Application forms, requirements and guidelines. Accessed 18 Feb 2014.
  63. Phillips, T. W., & Throne, J. E. (2010). Biorational approaches to managing stored-product insects. Annual Review of Entomology, 55, 375–397.PubMedCrossRefGoogle Scholar
  64. Rao, G. V. R., Rupela, O. P., Rao, V. R., & Reddy, Y. V. R. (2011). Role of biopesticides in crop protection: present status and future prospects. Indian Journal of Plant Protection, 35, 1–9.Google Scholar
  65. Ray, D. E. (1991). Pesticides derived from plants and other organisms. In W. J. Hayes & E. R. Laws (Eds.), Handbook of pesticide toxicology (pp. 2–3). New York: Academic.Google Scholar
  66. Rhoda, B., Freyer, B., & Macharia, J. (2006). Towards reducing synthetic pesticide imports in favour of locally available botanicals in Kenya: Conference on International Agricultural Research for Development, October 11–13, 2006, Tropentag, Bonn. Accessed 6 March 2014.
  67. Ricciardi, G., Ciccio, J. F., Ocampo, R., Lorenzo, D., Bandoni, A., & Dellacassa, E. (2009). Chemical variability of essential oils of Lippia alba (Miller) N. E. Brown growing in Costa Rica and Argentina. Natural Product Communications, 4, 853–858.PubMedGoogle Scholar
  68. Sarasan, V., Kite, G. C., Sileshi, G. W., & Stevenson, P. C. (2011). The application of phytochemistry and in vitro tools to the sustainable utilisation of medicinal and pesticidal plants for income generation and poverty alleviation. Plant Cell Reports, 30, 1163–1172.PubMedCrossRefGoogle Scholar
  69. Schreinemachers, P., & Tipraqsa, P. (2012). Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy, 37, 616–626.CrossRefGoogle Scholar
  70. Shukla, R., & Shukla, A. (2012). Market potential for biopesticides: a green product for agricultural applications. International Journal of Management Research and Review, 2, 91–99.Google Scholar
  71. Sinha, B., & Biswas, L. (2008). Potential of Biopesticide in Indian Agriculture vis-a-vis Rural Development. India, Science and Technology: 2008. NISTADS / CSIR Accessed 18 Feb 2014.
  72. Siziba, S., & Mekuria, M. (2003). Farm Level Evaluation of the Impact of IPM on Pesticide Use: A Comparative Analysis of IPM and Non-IPM trained farmers in Zimbabwe’s Smallholder Sector, Department of Agricultural Economics and Extension University of Zimbabwe, Working Paper AEE1/2003. Google Scholar
  73. Stevenson, P. C., Jayasekera, T. K., Belmain, S. R., & Veitch, N. C. (2009). Bisdesmosidic saponins from Securidaca longepedunculata (Polygalaceae) with deterrent and toxic properties to Coleapteran storage pests. Journal of Agricultural and Food Chemistry, 57, 8860–8867.PubMedCrossRefGoogle Scholar
  74. Stevenson, P. C., Nyirenda, S. P. & Veitch, N. C. (2010) Highly glycosylated flavonoid glycosides from Bobgunnia madagascariensis. Tetrahedron Letters, 51, 4727–4730.Google Scholar
  75. Stevenson, P. C., Nyirenda, S. P., Mvumi, B. M., Sola, P., Kamanula, J. F., Sileshi, G. W., et al. (2012a). Pesticidal plants: A viable alternative insect pest management approach for resource-poor farming in Africa. In O. Koul, G. S. Dhaliwal, S. Khokhar, & R. Singh (Eds.), Botanicals in environment and food security (pp. 212–238). Jodhpur: Scientific Publishers.Google Scholar
  76. Stevenson, P.C., Nyirenda, S.P. and Veitch, N.C. (2010) Highly glycosylated flavonoid glycosides from Bobgunnia madagascariensis. Tetrahedron Letters, 51, 4727–4730.Google Scholar
  77. Stevenson, P. C., Kite, G. C., Lewis, G. P., Forest, F., Nyirenda, S. P., Belmain, S. R., et al. (2012b). Distinct chemotypes of Tephrosia vogelii and implications for their use in pest control and soil enrichment. Phytochemistry, 78, 135–146.PubMedCrossRefGoogle Scholar
  78. Tata Strategic Management Group (2013). Indian Agrochemicals Industry Imperatives of Growth Knowledge and Strategy Paper, 3rd National Agrochemicals Conclave, 2013, FICCI, New Delhi Accessed 18 Feb 2014.
  79. UNEP. (2006). Africa environment outlook 2; Our environment, our wealth. Nairobi: Division of Early Warning and Assessment (DEWA), UNEP.Google Scholar
  80. UNEP (2007). Chemical use in Africa. Encyclopedia of Earth April 13, 2007. Accessed 18 Feb 2014.
  81. USAID (1994). Pesticides and the Agrichemical Industry in Sub-Saharan Africa. Bureau for Africa, Division of Food, Agriculture, and Resource Analysis. Environmental and Natural Resources Policy and Training Project. Winrock International Environmental Alliance Arlington, VA, 117 pp.Google Scholar
  82. U.S. Environmental Protection Agency (2013). What are Bio pesticides? Accessed 18 Feb 2014.
  83. Wandahwa, F., van Ranst, E., & van Damme, I. (1996). Pyrethrum (Chrysanthemum cinerariaefolium Vis.) cultivation in West Kenya: origin, ecological conditions and management. Industrial Crops and Products, 5, 307–322.CrossRefGoogle Scholar
  84. Wesseling, C., Ruepert, C., León, C., Monge, P., Hermosillo, H., & Partanen, T. J. (2001). Paraquat in developing countries. Journal of Occupational and Environmental Health, 7, 275–286.CrossRefGoogle Scholar
  85. World Bank (2005). Summary of Kenya Value Chain Analysis. Note Number 8, September 2005. World Bank Group, Africa Region, Private Sector Unit. 15. Accessed 18 Feb 2014.
  86. Zulu, D., Thokozani, B. L. K., Sileshi, G. W., Teklehaimanot, Z., Gondwe, D. S. B., Sarasan, V., et al. (2011). Propagation of the African medicinal and pesticidal plant, Securidaca longependunculata. African Journal of Biotechnology, 10, 5988–5992.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht and International Society for Plant Pathology 2014

Authors and Affiliations

  • P. Sola
    • 1
    Email author
  • B. M. Mvumi
    • 2
  • J. O. Ogendo
    • 3
  • O. Mponda
    • 4
  • J. F. Kamanula
    • 5
  • S. P. Nyirenda
    • 6
  • S. R. Belmain
    • 7
  • P. C. Stevenson
    • 7
    • 8
  1. 1.Centre for International Forestry Research c/o World Agroforestry CentreNairobiKenya
  2. 2.Department of Soil Science and Agricultural Engineering, Faculty of AgricultureHarareZimbabwe
  3. 3.Department of Crops, Horticulture and SoilsEgerton UniversityNjoroKenya
  4. 4.Naliendele Agricultural Research InstituteMtwaraTanzania
  5. 5.Department of ChemistryMzuzu UniversityMzuzuMalawi
  6. 6.Department of Agricultural Research ServicesLunyangwa StationMzuzuMalawi
  7. 7.Natural Resources InstituteUniversity of GreenwichLondonUK
  8. 8.Royal Botanic Gardens, KewSurreyUK

Personalised recommendations