Food Security

, Volume 6, Issue 1, pp 29–44 | Cite as

Global food markets, trade and the cost of climate change adaptation

  • Aline Mosnier
  • Michael Obersteiner
  • Petr Havlík
  • Erwin Schmid
  • Nikolay Khabarov
  • Michael Westphal
  • Hugo Valin
  • Stefan Frank
  • Franziska Albrecht
Original Paper

Abstract

Achieving food security in the face of climate change is a major challenge for humanity in the 21st century but comprehensive analyses of climate change impacts, including global market feedbacks are still lacking. In the context of uneven impacts of climate change across regions interconnected through trade, climate change impact and adaptation policies in one region need to be assessed in a global framework. Focusing on four Eastern Asian countries and using a global integrated modeling framework we show that i) once imports are considered, the overall climate change impact on the amount of food available could be of opposite sign to the direct domestic impacts and ii) production and trade adjustments following price signals could reduce the spread of climate change impacts on food availability. We then investigated how pressure on the food system in Eastern Asia could be mitigated by a consumer support policy. We found that the costs of adaptation policies to 2050 varied greatly across climate projections. The costs of consumer support policies would also be lower if only implemented in one region but market price leakage could exacerbate pressure on food systems in other regions. We conclude that climate adaptation should no longer be viewed only as a geographically isolated local problem.

Keywords

Climate change Integrated modeling International trade Adaptation Food security Eastern Asia 

References

  1. Adams, R. M., Hurd, B. H., Lenhart, S., & Leary, N. (1998). Effects of global climate change on agriculture: an interpretative review. Climate Research, 11, 19–30.CrossRefGoogle Scholar
  2. Alexandratos, N., Bruinsma, J., Boedeker, G., Schmidhuber, J., Broca, S., Shetty, P. et al. (2006). World agriculture: Towards 2030/2050. Prospects for food, nutrition, agriculture and major commodity groups. FAO.Google Scholar
  3. Bouët, A., Decreux, Y., Fontagne, L., Jean, S., Laborde, D. (2004). A consistent, ad-valorem equivalent measure of applied protection across the World: the MAcMap-HS6 database (CEPII Working Paper No. 2004-22).Google Scholar
  4. Bourguignon, F., Pleskovič, B., Bank, W. (2008). Rethinking infrastructure for development: annual world bank conference on development economics–global, 2007. World Bank Publications.Google Scholar
  5. Dalton, T. J., & Guei, R. G. (2003). Productivity gains from rice genetic enhancements in West Africa: countries and ecologies. World Development, 31, 359–374.CrossRefGoogle Scholar
  6. Garnett, T., Appleby, M. C., Balmford, A., Bateman, I. J., Benton, T. G., Bloomer, P., et al. (2013). Sustainable intensification in agriculture: premises and policies. Science, 341, 33–34.PubMedCrossRefGoogle Scholar
  7. Gilbert, C. L., Tabova, A. (2011). Coping with food price surges, In: Safeguarding food security in volatile global markets. Food and agriculture organization of the United nations (FAO), pp. 377–402.Google Scholar
  8. Global Land Cover 2000 database (2003). European Commission, Joint Research Centre. http://gem.jrc.ec.europa.eu/products/glc2000/glc2000.php. Accessed 11 Nov 2008.
  9. Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: the challenge of feeding 9 billion people. Science, 327, 812–818.PubMedCrossRefGoogle Scholar
  10. Gregory, P. J., Ingram, J. S. I., & Brklacich, M. (2005). Climate change and food security. Philosophical Transactions of the Royal Society B, 360, 2139–2148.CrossRefGoogle Scholar
  11. Grosh, M. E., Ninno, C. D., Tesliuc, E. D. (2008). For protection and promotion: The design and implementation of effective safety nets. World Bank Publications.Google Scholar
  12. Hatfield, J., Boote, K., Fay, P., Hahn, L., Izaurralde, C., Kimball, B. A. et al. (2008). Agriculture, In: The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States, a report by the U.S. Climate change science program and the subcommittee on global change research. Washington, DC., USA, p. 362.Google Scholar
  13. Havlík, P., Schneider, U. A., Schmid, E., Böttcher, H., Fritz, S., Skalský, R., et al. (2011). Global land-use implications of first and second generation biofuel targets. Energy Policy, 39, 5690–5702.CrossRefGoogle Scholar
  14. Havlík, P., Valin, H., Mosnier, A., Obersteiner, M., Baker, J. S., Herrero, M. et al. (2013). Crop productivity and the global livestock sector: implications for land use change and greenhouse gas emissions. American Journal of Agricultural Economics.Google Scholar
  15. Hempel, S., Frieler, K., Warszawski, L., Schewe, J., & Piontek, F. (2013). A trend-preserving bias correction–the ISI-MIP approach. Earth System Dynamics Discussion, 4, 49–92.CrossRefGoogle Scholar
  16. Hertel, T. W., Burke, M. B., & Lobell, D. B. (2010). The poverty implications of climate-induced crop yield changes by 2030. Global Environmental Change, 20, 577–585.CrossRefGoogle Scholar
  17. Howden, S. M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. PNAS, 104, 19691–19696.PubMedCrossRefGoogle Scholar
  18. Huang, J., Hu, R., van Meijl, H., & van Tongeren, F. (2004). Biotechnology boosts to crop productivity in China: trade and welfare implications. Journal of Development Economics, 75, 27–54.CrossRefGoogle Scholar
  19. Huang, H., von Lampe, M., & van Tongeren, F. (2011). Climate change and trade in agriculture. Food Policy, 36(Supplement 1), S9–S13.CrossRefGoogle Scholar
  20. Iglesias, A., Quiroga, S., & Diz, A. (2011). Looking into the future of agriculture in a changing climate. European Review of Agricultural Economics, 38, 427–447.CrossRefGoogle Scholar
  21. Iizumi, T., Yokozawa, M., & Nishimori, M. (2011). Probabilistic evaluation of climate change impacts on paddy rice productivity in Japan. Climatic Change, 107, 391–415.CrossRefGoogle Scholar
  22. IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. In C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G.-K. Plattner, S. K. Allen, M. Tignor, & P. M. Midgley (Eds.), A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  23. Jansson, T., & Heckelei, T. (2009). A new estimator for trade costs and its small sample properties. Economic Modelling, 26, 489–498.CrossRefGoogle Scholar
  24. Knox, J., Hess, T., Daccache, A., & Wheeler, T. (2012). Climate change impacts on crop productivity in Africa and South Asia. Environmental Research Letters, 7, 034032.CrossRefGoogle Scholar
  25. Liu, Y., Wang, E., Yang, X., & Wang, J. (2010). Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980s. Global Change Biology, 16, 2287–2299.CrossRefGoogle Scholar
  26. Lobell, D. B., & Field, C. B. (2007). Global scale climate–crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2, 014002.CrossRefGoogle Scholar
  27. Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333, 616–620.PubMedCrossRefGoogle Scholar
  28. Long, S. P. (2012). Virtual special issue on food security – greater than anticipated impacts of near-term global atmospheric change on rice and wheat. Global Change Biology, 18, 1489–1490.CrossRefGoogle Scholar
  29. Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., et al. (2007). Global climate projections. In Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. United Kingdom: Cambridge University Press.Google Scholar
  30. Mosnier, A., Havlík, P., Valin, H., Baker, J., Murray, B., Feng, S., et al. (2013). Alternative U.S. Biofuel mandates and global GHG emissions: the role of land use change, crop management and yield growth. Energy Policy, 57, 602–614.CrossRefGoogle Scholar
  31. Nakicenovic, N., Swart, R. (2000). Special report on emissions scenarios. Intergovernmental Panel on Climate Change.Google Scholar
  32. Nelson, G. C., Rosegrant, M. W., Palazzo, A., Gray, I., Ingersoll, C., Robertson, R. et al. (2010). Food security and climate change: challenges to 2050 and beyond. International Food Policy Research Institute.Google Scholar
  33. Nepstad, D. C., Stickler, C. M., & Almeida, O. T. (2006). Globalization of the Amazon Soy and beef industries: opportunities for conservation. Conservation Biology, 20, 1595–1603.PubMedCrossRefGoogle Scholar
  34. Nwanze, K. F., Mohapatra, S., Kormawa, P., Keya, S., & Bruce-Oliver, S. (2006). Rice development in sub-Saharan Africa. Journal of the Science of Food and Agriculture, 86, 675–677.CrossRefGoogle Scholar
  35. Olesen, J. E., & Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 16, 239–262.CrossRefGoogle Scholar
  36. Parry, M., Rosenzweig, C., Iglesias, A., Fischer, G., & Livermore, M. (1999). Climate change and world food security: a new assessment. Global Environmental Change, 9(Supplement 1), S51–S67.CrossRefGoogle Scholar
  37. Parry, M., Rosenzweig, C., & Livermore, M. (2005). Climate change, global food supply and risk of hunger. Philosophical Transactions of the Royal Society B, 360, 2125–2138.CrossRefGoogle Scholar
  38. Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., et al. (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467, 43–51.PubMedCrossRefGoogle Scholar
  39. Ramirez-Villegas, J., Challinor, A. J., Thornton, P. K., & Jarvis, A. (2013). Implications of regional improvement in global climate models for agricultural impact research. Environmental Research Letters, 8, 024018.CrossRefGoogle Scholar
  40. Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., et al. (2007). Climate models and their evaluation. In Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  41. Roudier, P., Sultan, B., Quirion, P., & Berg, A. (2011). The impact of future climate change on West African crop yields: what does the recent literature say? Global Environmental Change, 21, 1073–1083.CrossRefGoogle Scholar
  42. Schmidhuber, J., & Tubiello, F. N. (2007). Global food security under climate change. PNAS, 104, 19703–19708.PubMedCrossRefGoogle Scholar
  43. Seale, J., Regmi, A., Bernstein, J. (2003). International evidence on food consumption patterns. USDA.Google Scholar
  44. Sheffield, J., Goteti, G., & Wood, E. F. (2006). Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. Journal of Climate, 19, 3088–3111.CrossRefGoogle Scholar
  45. Skalský, R., Tarasovičová, Z., Balkovič, J., Schmid, E., Fuchs, M., Moltchanova, E. et al. (2008). GEO-BENE global database for bio-physical modeling. GEOBENE project.Google Scholar
  46. Smit, B., & Skinner, M. W. (2002). Adaptation options in agriculture to climate change: a typology. Mitigation and Adaptation Strategies for Global Change, 7, 85–114.CrossRefGoogle Scholar
  47. Smith, J. B. (1997). Setting priorities for adapting to climate change. Global Environmental Change, 7, 251–264.CrossRefGoogle Scholar
  48. Strzepek, K. (2012). A basin scale indicator approach to understanding the risk of climate variability and change: to water resources development and management (Background technical report).Google Scholar
  49. Thomas, D. S. G., Twyman, C., Osbahr, H., & Hewitson, B. (2007). Adaptation to climate change and variability: farmer responses to intra-seasonal precipitation trends in South Africa. Climatic Change, 83, 301–322.CrossRefGoogle Scholar
  50. Tol, R. S. J., Fankhauser, S., & Smith, J. B. (1998). The scope for adaptation to climate change: what can we learn from the impact literature? Global Environmental Change, 8, 109–123.CrossRefGoogle Scholar
  51. Waha, K., Müller, C., Bondeau, A., Dietrich, J. P., Kurukulasuriya, P., Heinke, J., et al. (2013). Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Global Environmental Change, 23, 130–143.CrossRefGoogle Scholar
  52. Williams, J. R. (1995). The EPIC model. 909–1000.Google Scholar
  53. Xiao, X., Ojima, D. S., Parton, W. J., Chen, Z., & Chen, D. (1995). Sensitivity of Inner Mongolia grasslands to climate change. Journal of Biogeography, 22, 643–648.CrossRefGoogle Scholar
  54. You, L., & Wood, S. (2006). An entropy approach to spatial disaggregation of agricultural production. Agricultural Systems, 90, 329–347.CrossRefGoogle Scholar
  55. Zhang, T., Huang, Y. (2012). Impacts of climate change and inter-annual variability on cereal crops in China from 1980 to 2008, 92, 1643–1652.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht and International Society for Plant Pathology 2014

Authors and Affiliations

  • Aline Mosnier
    • 1
    • 2
  • Michael Obersteiner
    • 1
  • Petr Havlík
    • 1
  • Erwin Schmid
    • 2
  • Nikolay Khabarov
    • 1
  • Michael Westphal
    • 3
    • 4
  • Hugo Valin
    • 1
  • Stefan Frank
    • 1
  • Franziska Albrecht
    • 1
    • 5
  1. 1.International Institute for Applied Systems Analysis (IIASA)LaxenburgAustria
  2. 2.University of Natural Resources and Life SciencesViennaAustria
  3. 3.Asian Development BankMandaluyong CityPhilippines
  4. 4.Abt AssociatesBethesdaUSA
  5. 5.University of ViennaViennaAustria

Personalised recommendations