Food Security

, Volume 5, Issue 2, pp 177–187 | Cite as

Food chemistry and chemophobia

Original Paper

Abstract

Chemophobia is the exaggerated fear of anything ‘chemical’ which is found quite widespread both in the Western world and in Asia. That food incontrovertibly is chemistry seems to require regulation of all sorts. As we will see below, that would truly necessitate gargantuan determination exceeding every regulatory effort to date. Worse, it will be futile. Our food is peppered with natural compounds such as organohalogens, dioxins, aflatoxins, and many others. These we will briefly discuss, including their natural whereabouts. Overall, the aim of this paper is to show that food is chemistry beyond our immediate control, including those synthetic chemicals that are deemed to be artificial and should not be found in ‘safe’ food. The latter is an overestimation of regulatory competence and an underestimation of nature to produce most unlikely chemicals in unlikely places, including our food.

Keywords

Chemistry Organohalogens Chemophobia Food safety Food security 

References

  1. Ames, B. N. (1991). Natural carcinogens and dioxin. Science of the Total Environment, 104, 159–166.PubMedCrossRefGoogle Scholar
  2. Ames, B. N., & Gold, L. S. (1989). Pesticides, risk, and applesauce. Science, 244, 755–757.PubMedCrossRefGoogle Scholar
  3. Ames, B. N., Profet, M., & Gold, L. S. (1990). Dietary pesticides (99.99 % all natural). Proceedings of the National Academy of Sciences USA, 87, 7777–7781.CrossRefGoogle Scholar
  4. Andersen, B., & Frisvad, J. C. (2004). Natural occurrence of fungi and fungal metabolites in moldy tomatoes. Journal of Agriculture and Food Chemistry, 52, 7507–7513.CrossRefGoogle Scholar
  5. Arlt, V. M., Stilborova, M., & Schmeiser, H. H. (2002). Aristolochic acid as a probable human cancer hazard in herbal remedies: a review. Mutagenesis, 17(4), 265–277.PubMedCrossRefGoogle Scholar
  6. Arlt, V. M., Alunni-Perret, V., Quatrehomme, G., Ohayon, P., Albano, L., Gaïd, H., et al. (2004). Aristolochic acid (AA)-DNA adduct as marker of AA exposure and risk factor for AA nephropathy-associated cancer. International Journal of Cancer, 111, 977–980.CrossRefGoogle Scholar
  7. Baccarelli, A., Pesatori, A. C., Consonni, D., Mocarelli, P., Patterson, D. G., Jr., Caporaso, N. E., et al. (2005). Health status and plasma dioxin levels in chloracne cases 20 years after the Seveso, Italy accident. British Journal of Dermatology, 152, 459–465.PubMedCrossRefGoogle Scholar
  8. Benavente-García, O., & Castillo, J. (2008). Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. Journal of Agriculture and Food Chemistry, 56, 6185–6205.CrossRefGoogle Scholar
  9. Bezuidenhout, S. C., Gelderblom, W. C. A., Gorst-Allman, C. P., Horak, R. M., Marasas, W. F. O., Spiteller, G., & Vleggaar, R. (1988). Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. Journal of the Chemical Society, Chemical Communications, 743–745.Google Scholar
  10. Billington, S., Smith, R. B., Karousos, N. G., Cowham, E., & Davis, J. (2008). Covert approaches to countering adult chemophobia. Journal of Chemical Education, 85(3), 379–380.CrossRefGoogle Scholar
  11. Carson, R. (1962). Silent spring. Greenwich: Fawcett.Google Scholar
  12. Chen, C.-Y. O., & Blumberg, J. B. (2008). In vitro activity of almond skin polyphenols for scavenging free radicals and inducing quinone reductase. Journal of Agriculture and Food Chemistry, 56, 4427–4434.CrossRefGoogle Scholar
  13. Coburn, T., Dumanoski, D., & Myers, J. P. (1996). Our stolen future. New York: Dutton.Google Scholar
  14. Cosyns, J.-P. (2003). Aristolochic acid and ‘Chinese herbs nephropathy’, a review of the evidence to date. Drug Safety, 26(1), 33–48.PubMedCrossRefGoogle Scholar
  15. Crummett, W. B. (2002). Decades of dioxin. Bloomington: Xlibris.Google Scholar
  16. Dimaio, V. J. M., & Garriott, J. C. (1974). Lethal caffeine poisoning in a child. Forensic Science, 3, 275–278.PubMedCrossRefGoogle Scholar
  17. Donaldson, W. T. (1977). Trace organics inn water. Environmental Science and Technology, 11(4), 348–351.CrossRefGoogle Scholar
  18. Eckerman, I. (2005). The Bhopal saga — causes and consequences of the world’s largest industrial disaster. India: Universities Press.Google Scholar
  19. Frank, P., & Ottoboni, M. A. (2011). The dose makes the poison (3rd ed.). Hoboken: John Wiley.CrossRefGoogle Scholar
  20. Fuller, J. G. (1979). Poison that fell from the sky. New York: Berkeley Books.Google Scholar
  21. Gan, J., Yates, S. R., Ohr, H. D., & Sims, J. J. (1998). Production of methyl bromide by terrestrial higher plants. Geophysical Research Letters, 25, 3595–3598.CrossRefGoogle Scholar
  22. Gautam, P., & Dill-Macky, R. (2011). Type I host resistance and trichothecene accumulation in Fusarium-infected wheat heads. American Journal of Agriculture and Animal Science, 6(2), 231–241.Google Scholar
  23. Goldblatt, L. A. (1969). Aflatoxin: Scientific background, control, and implications. New York: Academic.Google Scholar
  24. Gough, M. (1986). Dioxin, agent orange: the facts. New York: Plenum.Google Scholar
  25. Greensfelder, L. (2000). Herbal product linked to cancer. Science, 288, 1946.PubMedCrossRefGoogle Scholar
  26. Gribble, G. W. (1974). TCDD — a deadly molecule. Chemistry, 47, 15–18.Google Scholar
  27. Gribble, G. (1991). The chemophobia conundrum. Chemistry & Industry, 591.Google Scholar
  28. Hagen, E. W., & Worman, J. J. (1995). An endless series of hobgoblins. Kearney: Morris.Google Scholar
  29. Horii, Y., van Bavel, B., Kannan, K., Petrick, G., Nachtigall, K., & Yamashita, N. (2008). Novel evidence for natural formation of dioxins in ball clay. Chemosphere, 70, 1280–1289.PubMedCrossRefGoogle Scholar
  30. Hounsome, N., Hounsome, B., Tomos, D., & Edwards-Jones, G. (2008). Plant metabolites and nutritional quality of vegetables. Journal of Food Science, 73, R48–R65.PubMedCrossRefGoogle Scholar
  31. Huang, M.-T., Wood, A. W., Newmark, H. L., Sayer, J. M., Yagi, H., Jerina, D. M., et al. (1983). Inhibition of the mutagenicity of bay-region diol-epoxides of polycyclic aromatic hydrocarbons by phenolic plant flavonoids. Carcinogenesis, 4, 1631–1637.PubMedCrossRefGoogle Scholar
  32. Josephson, J. (2001). Mold in maize. Environmental Health Perspectives, 109, A132–A133.CrossRefGoogle Scholar
  33. Kauffman, G. B. (1991). Chemophobia. Chemistry in Britain, June, 512–516.Google Scholar
  34. Keay, B. A., Hopkins, J. M., & Dibble, P. W. (2008). Five-membered rings with one heteroatom together with their benzo and other carbocyclic-fused derivatives. In A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, & R. J. K. Taylor (Eds.), 3.08 — Furans and their benzo derivatives: applications, comprehensive heterocyclic chemistry III (Vol. 3) (pp. 571–623). Amsterdam: Elsevier.CrossRefGoogle Scholar
  35. Klich, M. A. (2007). Aspergillus flavus: the major producer of aflatoxin. Molecular Plant Pathology, 8(6), 713–722.PubMedCrossRefGoogle Scholar
  36. Kreiss, K., Gomaa, A., Kullman, G., Fedan, K., Simoes, E. J., & Enright, P. L. (2002). Clinical bronchiolitis obliterans in workers at a microwave-popcorn plant. The New England Journal of Medicine, 347(5), 330–338.PubMedCrossRefGoogle Scholar
  37. Krieger, N., Wolff, M. S., Hiatt, R. A., Rivera, M., Vogelman, J., & Orentreich, N. (1994). Breast cancer and serum organochlorines: a prospective study among white, black, and Asian women. Journal of the National Cancer Institute, 86, 589–599.PubMedCrossRefGoogle Scholar
  38. Lieberman, A. J., & Kwon, S. C. (2004). Facts versus fears: a review of the greatest unfounded health scares of recent times. New York: American Council on Science and Health.Google Scholar
  39. Marasas, W. F. O., Riley, R. T., Hendricks, K. A., Stevens, V. L., Sadler, T. W., Gelineau-van Waes, J., et al. (2004). Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. Journal of Nutrition, 134, 711–716.PubMedGoogle Scholar
  40. Matsuura, M., Saikawa, Y., Inui, K., Nakae, K., Igarashi, M., Hashimoto, K., et al. (2009). Identification of the toxic trigger in mushroom poisoning. Nature Chemical Biology, 5, 465–467.PubMedCrossRefGoogle Scholar
  41. Mazur, A. (1998). A hazardous inquiry: the Rashomon effect at Love Canal. Cambridge: Harvard University Press.Google Scholar
  42. McLachlan, J. A. (1997). Synergistic effect of environmental estrogens: report withdrawn. Science, 277, 462–463.PubMedCrossRefGoogle Scholar
  43. Mencken, H. L. (1949). A Mencken chrestomathy. New York: Knopf.Google Scholar
  44. Mensinga, T. T., Sips, A. J. A. M., Rompelberg, C. J. M., van Twillert, K., Meulenbelt, J., van den Top, H. J., et al. (2005). Potato glycoalkaloids and adverse effects in humans: an ascending dose study. Regulatory Toxicology and Pharmacology, 41, 66–72.PubMedCrossRefGoogle Scholar
  45. Monde, K., Satoh, H., Nakamura, M., Tamura, M., & Takasugi, M. (1988). Organochlorine compounds from a terrestrial higher plant: structures and origin of chlorinated orcinol derivatives from diseased bulbs of Lilium maximowiczii. Journal of Natural Products, 61, 913–921.CrossRefGoogle Scholar
  46. Moore, R. E. (1977). Volatile compounds from marine algae. Accounts of Chemical Research, 10, 40–47.CrossRefGoogle Scholar
  47. Nortier, J. L., Martinez, M.-C. M., Schmeiser, H. H., Arlt, V. M., Bieler, C. A., Petein, M., et al. (2000). Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). The New England Journal of Medicine, 342, 1686–1692.PubMedCrossRefGoogle Scholar
  48. Parkin, D. M., Whelan, S. L., Ferlay, J., et al. (1997). Cancer incidence in five continents vol VII. IARC Sci Pub No 143, Lyon: IARC, 322–5.Google Scholar
  49. Pitt, J. I. (2000). Toxigenic fungi: which are important? Medical Mycology, 38, 17–22.PubMedGoogle Scholar
  50. Pool, R. (1992). Wresting anticancer secrets from garlic and soy sauce. Science, 257, 1349.CrossRefGoogle Scholar
  51. Ray, D. L. (1993). Environmental overkill: whatever happened to common sense? (p. 171). Washington: Regnery Gateway.Google Scholar
  52. Sawada, T., Aono, M., Asakawa, S., Ito, A., & Awano, K. (2000). Structure determination and total synthesis of a novel antibacterial substance, AB0022A, produced by a cellular slime mold. Journal of Antibiotics, 53, 959–966.PubMedCrossRefGoogle Scholar
  53. Silk, P. J., Lonergan, G. C., Arsenault, T. L., & Boyle, C. D. (1997). Evidence of natural organochlorine formation in peat bogs. Chemosphere, 35, 2865–2880.CrossRefGoogle Scholar
  54. Stiborová, M., Frie, E., Sopko, B., Wiessler, M., & Schmeiser, H. H. (2002). Carcinogenic aristolochic acids upon activation by DT-diaphorase form adducts found in DNA of patients with Chinese herbs nephropathy. Carcinogenesis, 23, 617–625.PubMedCrossRefGoogle Scholar
  55. Stockmann-Juvalla, H., & Savolainen, K. (2008). A review of the toxic effects and mechanisms of action of fumonisin B1. Human & Experimental Toxicology, 27, 799–809.CrossRefGoogle Scholar
  56. Sullivan, J. L. (1977). Caffeine poisoning in an infant. Journal of Pediatrics, 90, 1022–1023.PubMedCrossRefGoogle Scholar
  57. Takenaka, Y., Hamada, N., & Tanahashi, T. (2005). Monomeric and dimeric dibenzofurans from cultured mycobionts of Lecanora iseana. Phytochemistry, 66, 665–668.PubMedCrossRefGoogle Scholar
  58. Tanahashi, T., Takenaka, Y., Nagakura, N., & Hamada, N. (2001). Dibenzofurans from the cultured lichen mycobionts of Lecanora cinereocarnea. Phytochemistry, 58, 85–1134.CrossRefGoogle Scholar
  59. Taubes, G. (2008). The bacteria fight back. Science, 321, 356–361.PubMedCrossRefGoogle Scholar
  60. Utkina, N. K., Denisenko, V. A., Scholokova, O. V., Virovaya, M. V., Gerasimenko, A. V., Popov, D. Y., et al. (2001). Spongiadioxins A and B, two new polybrominated dibenzo-p-dioxins from an Australian marine sponge Dysidea dendyi. Journal of Natural Products, 64, 151–153.PubMedCrossRefGoogle Scholar
  61. Utkina, N. K., Denisenko, V. A., Virovaya, M. V., Scholokova, O. V., & Prokof’eva, N. G. (2002). Two new minor polybrominated dibenzo-p-dioxins from the marine sponge Dysidea dendyi. Journal of Natural Products, 65, 1213–1215.PubMedCrossRefGoogle Scholar
  62. van der Merwe, K. J., Steyn, P. S., Fourie, L., Scott, D. B., & Theron, J. J. (1965a). Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus Wilh. Nature, 205, 1112–1113.PubMedCrossRefGoogle Scholar
  63. van der Merwe, K. J., Steyn, P. S., & Fourie, L. (1965b). Mycotoxins. Part II. The constitution of ochratoxins A, B, and C, metabolites of Aspergillus ochraceus Wilh. Journal of the Chemical Society, 7083–7088.Google Scholar
  64. Vinson, J. A., Proch, J., Bose, P., Muchler, S., Taffera, P., Shuta, D., et al. (2006). Chocolate is a powerful ex vivo and in vivo antioxidant, an antiatherosclerotic agent in an animal model, and a significant contributor to antioxidants in the European and American diets. Journal of Agriculture and Food Chemistry, 54, 8071–8076.CrossRefGoogle Scholar
  65. Watson, P. (1993). Earthforce! An Earth warrior’s guide to strategy. La Canada: Chaco Press.Google Scholar
  66. Wild, C. P., & Gong, Y. Y. (2010). Mycotoxins and human disease: a largely ignored global health issue. Carcinogeneis, 31, 71–82.CrossRefGoogle Scholar
  67. Winter, C. K. & Katz, J. M. (2011), Dietary exposure to pesticide residues from commodities alleged to contain the highest contamination levels. Journal of Toxicology, Article ID 589674, 7 pages. doi:10.1155/2011/589674
  68. Winterton, N. (1996). A role for methyl chlorine in evolution? Mutation Research, 372, 147–148.PubMedCrossRefGoogle Scholar
  69. Winterton, N. (2000). Chlorine: the only green element — towards a wider acceptance of its role in natural cycles. Green Chemistry, 2, 173–225.CrossRefGoogle Scholar
  70. Wittsiepe, J., Kullmann, Y., Schrey, P., Selenka, F., & Wilhelm, M. (1999). Peroxidase-catalyzed in vitro formation of polychlorinated dibenzo-p-dioxins and dibenzofurans from chlorophenols. Toxicology Letters, 106, 191–200.PubMedCrossRefGoogle Scholar
  71. Wittsiepe, J., Kullmann, Y., Schrey, P., Selenka, F., & Wilhelm, M. (2000). Myeloperoxidase-catalyzed formation of PCDD/F from chlorophenols. Chemosphere, 40, 963–968.PubMedCrossRefGoogle Scholar
  72. Worman, J. J., & Gribble, G. W. (1992). Herbicides and chemophobia. Journal of Arboriculture, 18, 10–14.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht and International Society for Plant Pathology 2013

Authors and Affiliations

  1. 1.Department of ChemistryDartmouth CollegeHanoverUSA

Personalised recommendations