Advertisement

Food Security

, Volume 4, Issue 4, pp 477–508 | Cite as

Crops that feed the world 8: Potato: are the trends of increased global production sustainable?

  • Paul R. J. Birch
  • Glenn Bryan
  • Brian Fenton
  • Eleanor M. Gilroy
  • Ingo Hein
  • John T. Jones
  • Ankush Prashar
  • Mark A. Taylor
  • Lesley Torrance
  • Ian K. Toth
Original Paper

Abstract

Potato is produced on all continents except Antarctica and is the world’s third most important food crop. Potato production has increased dramatically in developing countries in the past two decades, and has now overtaken that in the developed world, underlining the growing importance of potato as a staple food crop to meet the demands of increasing human populations. Potato is also an important source of starch. It has been adapted for cultivation in a wide range of environments and, with the availability of significant germplasm resources, the potential to further exploit its natural biodiversity is considerable. Potato yields vary considerably across the world, with the lowest being in Sub-Saharan Africa; <75 % of the global average and <30 % of the top producing regions. Many factors contribute to this variation, providing targets for improved agronomic practice and a stimulus to improve varieties to increase production in the poorest-yielding countries. The ability to adapt potato to withstand multiple biotic and abiotic stresses is critical to its future growth as a major food source. In current breeding efforts, strong emphasis is being placed on these traits in attempts to better equip the potato crop in a changing climate. The genomics era is accelerating our understanding of the key genes and mechanisms underlying potato development, physiology, water and nutrient use efficiency and resistance to biotic and abiotic stresses. Genomics technologies provide the potential for more rapid, marker-assisted breeding strategies, and afford the opportunity for biotechnological approaches, particularly in the case of major gene resistance to pests and diseases. Continued review of GM policies and regulations, and associated social and political opinions, are needed to guide and determine the safest and most productive routes to potato improvement.

Keywords

Solanum Climate change Biotic and abiotic stress Biotechnology Breeding 

References

  1. Achenbach, U., Paulo, J., Ilarionova, E., Lubeck, J., Strahwald, J., Tacke, E., Hofferbert, H. R., & Gebhardt, C. (2009). Using SNP markers to dissect linkage disequilibrium at a major quantitative trait locus for resistance to the potato cyst nematode Globodera pallida on potato chromosome V. Theoretical and Applied Genetics, 118, 619–629.PubMedCrossRefGoogle Scholar
  2. Allen, C., Prior, P., & Hayward, A. C. (Eds.). (2005). Bacterial wilt disease and the Ralstonia solanacearum species complex. St. Paul: APS Press.Google Scholar
  3. Almekinders, C. J. M., Chilver, A. S., & Renia, H. M. (1996). Current status of the TPS technology in the world. Potato Research, 39, 289–303.CrossRefGoogle Scholar
  4. Alyokhin, A., Baker, M., Mota-Sanchez, D., Dively, G., & Grafius, E. (2008). Colorado Potato Beetle resistance to insecticides. American Journal of Potato Research, 85, 395–413.CrossRefGoogle Scholar
  5. Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19, 535–544.CrossRefGoogle Scholar
  6. Anon. (1998). Council Directive 98/57/EC on the control of Ralstonia solanacearum (Smith) Yabuuchi et al. Official Journal of the European Communities, L235, 1–39.Google Scholar
  7. Arce, P., Moreno, M., Gutierrez, M., et al. (1999). Enhanced resistance to bacterial infection by Erwinia carotovora subsp atroseptica in transgenic potato plants expressing the attacin or the cecropin SB-37 genes. American Journal of Potato Research, 76, 169–177.CrossRefGoogle Scholar
  8. Autrique, A., & Potts, M. J. (1987). The influence of mixed cropping on the control of potato bacterial wilt (Pseudomonas solanacearum). Annals of Applied Biology, 111, 125–133.CrossRefGoogle Scholar
  9. Bakker, E., Achenbach, U., Bakker, J., van Vliet, J., Peleman, J., Segers, B., van der Heijden, S., van der Linde, P., Graveland, R., Hutten, R., van Eck, H., Coppoolse, E., van der Vossen, E., Bakker, J., & Goverse, A. (2004). A high-resolution map of the H1 locus harbouring resistance to the potato cyst nematode Globodera rostochiensis. Theoretical and Applied Genetics, 109, 146–152.PubMedCrossRefGoogle Scholar
  10. Barker, H., & Dale, M. F. B. (2006). Resistance to viruses in potato. In G. Loebenstein & J. P. Carr (Eds.), Natural resistance mechanisms of plants to viruses (pp. 341–366). Dordrecht: Springer.CrossRefGoogle Scholar
  11. Barker, H., Reavy, B., Kumar, A., Webster, K. D., & Mayo, M. A. (1992). Restricted virus multiplication in potatoes transformed with the coat protein gene of potato leafroll luteovirus – similarities with a type of host gene-mediated resistance. Annals of Applied Biology, 120, 55–64.CrossRefGoogle Scholar
  12. Battisti, & Naylor. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323, 240–244.PubMedCrossRefGoogle Scholar
  13. Bellom, M. R., & Reeves, J. (Eds.). (2002). Quantitative analysis of data from participatory methods in plant breeding. Mexico: CIMMYT.Google Scholar
  14. Berrios, D. E., & Rubirigi, A. (1993). Integrated control of bacterial wilt in seed production by the Burundi National Potato Program. In: G. L. Hartman, A. C. Hayward (Eds.), Bacterial Wilt. ACIAR Proc. No 45, (pp. 284–288). Canberra, Australia.Google Scholar
  15. Birch, P. R. J., Boevink, P. C., Gilroy, E. M., Hein, I., Pritchard, L., & Whisson, S. C. (2008). RXLR effectors: delivery, functional redundancy and durable disease resistance. Current Opinion in Plant Biology, 11, 373–379.PubMedCrossRefGoogle Scholar
  16. Birch, P. R. J., Rehmany, A. P., Pritchard, L., Kamoun, S., & Beynon, J. L. (2006). Trafficking arms: oomycete effectors enter host plant cells. Trends in Microbiology, 14, 8–11.PubMedCrossRefGoogle Scholar
  17. Birch, P. R. J., & Whisson, S. C. (2001). Phytophthora infestans enters the genomic era. Molecular Plant Pathology, 2, 257–263.PubMedCrossRefGoogle Scholar
  18. Black, W. (1970). The nature and inheritance of field resistance to late blight (Phytophthora infestans) in potatoes. American Journal of Potato Research, 47, 279–288.CrossRefGoogle Scholar
  19. Blennow, A., Bay-Smidt, A. M., Leonhardt, P., Bandsholm, O., & Madsen, H. M. (2003). Starch paste stickiness is a relative native starch selection criterion for wet-end paper manufacturing. Starch, 55, 381–389.CrossRefGoogle Scholar
  20. Bochre, K. K., & Papdiwal, P. B. (2011). Bacterial diseases of vegetables from Aurangabad district. Flora and Fauna (Jhansi), 17, 21–24.Google Scholar
  21. Bonierbale, M. W., Plaisted, R. L., & Tanksley, S. D. (1988). RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics, 120, 1095–1103.PubMedGoogle Scholar
  22. Bonierbale, M. W., Simon, R., Zhang, D. P., Ghislain, M., Mba, C., & Li, X.-Q. (2003). Genomics and molecular breeding for root and tuber crop improvement. In H. J. Newbury (Ed.), Plant molecular breeding (pp. 216–253). Oxford: Blackwell.Google Scholar
  23. Boukhris-Bouhachem, S., Rouze-Jouan, J., Souissi, R., Glais, L., & Hulle, M. (2011). Transmission efficiency of the strain PVYNTN by commonly captured aphids in Tunisian potato fields. Plant Pathology Journal, 10, 22–28.CrossRefGoogle Scholar
  24. Bradeen, J. M., & Kole, C. (Eds.). (2011). Genetics, genomics and breeding of potato. Enfield, NH: CRC Press and Science Publishers.Google Scholar
  25. Bradshaw, J. E. (2005). Potato improvement at SCRI by multitrait genotypic recurrent selection. In: Proc. IX Simposio de Atualizacao em Genetica e Melhoramento de Plantas 25 -26 August 2005, (pp. 9–28). Lavras, Brasil: Universidade Federal de Lavras.Google Scholar
  26. Bradshaw, J. E. (2006). Genetics of agrihorticultural traits. In J. Gopal & S. M. P. Khurana (Eds.), Handbook of potato production, improvement and postharvest management. New York: The Haworth Press.Google Scholar
  27. Bradshaw, J. E., Dale, M. F. B., & Mackay, G. R. (2003). Use of mid-parent values and progeny tests to increase the efficiency of potato breeding for combined processing quality and disease and pest resistance. Theoretical and Applied Genetics, 107, 36–42.PubMedGoogle Scholar
  28. Bradshaw, J. E., Dale, M. F. B., Swan, G. E. L., Todd, D., & Wilson, R. N. (1998). Early-generation selection between and within pair crosses in a potato (Solanum tuberosum subsp. tuberosum) breeding programme. Theoretical and Applied Genetics, 97, 1331–1339.CrossRefGoogle Scholar
  29. Bradshaw, J. E., Lees, A. K., & Stewart, H. E. (2000). How to breed potatoes for resistance to fungal and bacterial diseases. Plant Breeding Seed Science, 44, 3–20.Google Scholar
  30. Bradshaw, J. E., & Mackay, G. R. (1994). Breeding strategies for clonally propagated potatoes. In J. E. Bradshaw & G. R. MacKay (Eds.), Potato genetics (pp. 467–497). Wallingford: CAB International.Google Scholar
  31. Bradshaw, J. E., Pande, B., Bryan, G. J., Hackett, C. A., McLean, K., Stewart, H. E., & Waugh, R. (2004). Interval mapping of quantitative trait loci for resistance to late blight [Phytophthora infestans (Mont.) de Bary], height and maturity in a tetraploid population of potato (Solanum tuberosum subsp. tuberosum). Genetics, 168, 983–995.PubMedCrossRefGoogle Scholar
  32. Bradshaw, J. E., & Ramsay, G. (2005). Utilisation of the Commonwealth Potato Collection in potato breeding. Euphytica, 146, 9–19.CrossRefGoogle Scholar
  33. Bradshaw, J. E., Stewart, H. E., Wastie, R. L., Dale, M. F. B., & Phillips, M. S. (1995). Use of seedling progeny tests for genetical studies as part of a potato (Solanum tuberosum subsp. tuberosum) breeding programme. Theoretical and Applied Genetics, 90, 899–905.CrossRefGoogle Scholar
  34. Bradshaw, J. E., Todd, D., & Wilson, R. N. (2000). Use of tuber progeny tests for genetical studies as part of a potato (Solanum tuberosum subsp. tuberosum) breeding programme. Theoretical and Applied Genetics, 100, 772–781.CrossRefGoogle Scholar
  35. Brown, C. R. (1993). Outcrossing rate in cultivated autotetraploid potato. American Potato Journal, 70, 725–734.CrossRefGoogle Scholar
  36. Brown, C. R. (2005). Antioxidants in potato. American Journal of Potato Research, 82, 163–172.CrossRefGoogle Scholar
  37. Bryan, G. J., McLean, K., Bradshaw, J. E., De Jong, W. S., Phillips, M., Castelli, L., & Waugh, R. (2002). Mapping QTLs for resistance to the cyst nematode Globodera pallida derived from the wild potato species Solanum vernei. Theoretical and Applied Genetics, 105, 68–77.PubMedCrossRefGoogle Scholar
  38. Bryan, G. J., McLean, K., Pande, B., Purvis, A., Hackett, C. A., Bradshaw, J. E., & Waugh, R. (2004). Genetical dissection of H3-mediated polygenic PCN resistance in a heterozygous autotetraploid potato population. Molecular Breeding, 14, 105–116.CrossRefGoogle Scholar
  39. Bukasov, S. M. (1971). Cultivated potato species. In: S. M. Bukasov (Ed.), Flora of cultivated plants, Vol 9 (pp. 5–40). Kolos, Leningrad, Russia.Google Scholar
  40. Burton, W. G. (1989). The potato. London: Longman.Google Scholar
  41. CABI/EPPO. (1999). Distribution maps of plant diseases. Wallingford: CAB International.Google Scholar
  42. Caligari, P. D. S. (1992). Breeding new varieties. In P. Harris (Ed.), The potato crop (pp. 334–372). London: Chapman & Hall.CrossRefGoogle Scholar
  43. Carroll, C. P. (1982). A mass-selection method for the acclimatization and improvement of edible diploid potatoes in the United Kingdom. Journal of Agricultural and Food Chemistry, 99, 631–640.Google Scholar
  44. Carroll, C. P., & De Maine, M. J. (1989). The agronomic value of tetraploid F1 hybrids between potatoes of group Tuberosum and group Phureja/Stenotomum. Potato Research, 32, 447–456.CrossRefGoogle Scholar
  45. Chen, X., Salamini, F., & Gebhardt, C. (2001). A potato molecular-function map for carbohydrate metabolism and transport. Theoretical and Applied Genetics, 102, 284–295.CrossRefGoogle Scholar
  46. Collins, A., Milbourne, D., Ramsay, L., Meyer, R., Chatot-Balandras, C., Oberhagemann, P., De Jong, W., Gebhardt, C., Bonnel, E., & Waugh, R. (1999). QTL for field resistance to late blight in potato are strongly correlated with maturity and vigour. Molecular Breeding, 5, 387–398.CrossRefGoogle Scholar
  47. Colton, L. M., Groza, H. I., Wielgus, S. M., & Jiang, J. (2006). Marker-assisted selection for the broad-spectrum potato late blight resistance conferred by gene RB derived from a wild potato species. Crop Science, 46, 589–594.CrossRefGoogle Scholar
  48. Cromme, N., Prakash, A. B., Lutaladio, N., & Exeta, F (2009). Strengthening the potato value chains: technical and policy options for developing countries. Food and Agriculture Organisation of the United Nations. Rome: FAO.Google Scholar
  49. Czajkowski, R. L., de Boer, W. J., van Veen, J. A., & van der Wolf, J. M. (2012). Studies on the interaction between the biocontrol agent, Serratia plymuthica A30, and blackleg-causing Dickeya sp. (biovar 3) in potato (Solanum tuberosum). Plant Pathology, 61, 677–688.CrossRefGoogle Scholar
  50. Czajkowski, R., Pérombelon, M. C. M., van Veen, J. A., & van der Wolf, J. M. (2012). Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathology, 60, 999–1013.CrossRefGoogle Scholar
  51. Dale, M. F. B., & Mackay, G. R. (1994). Inheritance of table and processing quality. In J. E. Bradshaw & G. R. Mackay (Eds.), Potato genetics (pp. 285–315). Wallingford: CAB International.Google Scholar
  52. Davies, H. V. (2002). Commercial developments with transgenic potato. In V. Valpuesta (Ed.), Fruit and vegetable biotechnology (pp. 222–249). Cambridge: Woodhead Publishing Limited.CrossRefGoogle Scholar
  53. de Boer, J. M., Borm, T. J. A., Jesse, T., Brugmans, B., Tang, X., Bryan, G. J., van Eck, H. J., & Visser, R. R. F. (2011). A hybrid BAC physical map of potato: a framework for sequencing a heterozygous genome. BMC Genomics, 12, 594.PubMedCrossRefGoogle Scholar
  54. De Bokx, J. A., & van der Want, J. P. H. (1987). Viruses of potatoes and seed-potato production (2nd Edition, pp. 259). Wageningen.Google Scholar
  55. D’hoop, B. B., Paulo, M., Kowitwanich, K., Sengers, M., Visser, R. G., van Eck, H. J., & van Eeuwijk, F. A. (2010). Population structure and linkage disequilibrium unravelled in tetraploid potato. Theoretical and Applied Genetics, 121, 1151–1170.PubMedCrossRefGoogle Scholar
  56. D’hoop, B. B., Paulo, M. J., Mank, R. A., van Eck, H. J., & van Eeuwijk, F. A. (2008). Association mapping of quality traits in potato (Solanum tuberosum L.). Euphytica, 161, 47–60.CrossRefGoogle Scholar
  57. Diaz de la Garza, R., Quinlivan, E. P., Klaus, S. M., Basset, G. J., Gregory, J. F. III, & Hanson, A. D. (2004) Folate biofortification in tomatoes by engineering the pterin branch of folate synthesis. Proceedings of the National Academy of Science USA, 101, 13720–13725.Google Scholar
  58. Diretto, G., Al-Babili, S., Tavazza, R., Papacchioli, V., Beyer, P., & Giuliano, G. (2007). Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One, 2, e350.PubMedCrossRefGoogle Scholar
  59. Dong, F., Song, S., Naess, S. K., Helgeson, J. P., Gebhardt, C., & Jiang, J. (2000). Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theoretical and Applied Genetics, 101, 1001–1007.CrossRefGoogle Scholar
  60. Dong, Y. H., Wang, L. H., Xu, J. L., Zhang, H. B., Zhang, X. F., & Zhang, L. H. (2001). Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature, 411, 813–817.PubMedCrossRefGoogle Scholar
  61. Douches, D. S., & Grafius, E. J. (2005). Transformation for insect resistance. In M. K. Razdan & A. K. Mattoo (Eds.), Genetic improvement of solanaceous crops volume I: potato (pp. 235–266). Enfield: Science Publishers, Inc.Google Scholar
  62. Duarte, V., De Boer, S. H., Ward, L. J., & De Oliveira, A. M. R. (2004). Characterization of atypical Erwinia carotovora strains causing blackleg of potato in Brazil. Journal of Applied Microbiology, 96, 535–545.PubMedCrossRefGoogle Scholar
  63. Ducreux, L. J., Morris, W. L., Hedley, P. E., Shepherd, T., Davies, H. V., Millam, S., & Taylor, M. A. (2005). Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. Journal of Experimental Botany, 56, 81–89.PubMedGoogle Scholar
  64. During, K. (1996). Genetic engineering for resistance to bacteria in transgenic plants by introduction of foreign genes. Molecular Breeding, 2, 297–305.CrossRefGoogle Scholar
  65. Elphinstone, J. G. (2005). The current bacterial wilt situation: A global overview. In: C. Allen, P. Prior, & A. C. Hayword (Eds.), Bacterial wilt disease and the Ralstonia solanacearum complex (pp. 9–28).Google Scholar
  66. Elphinstone, J. G., Stanford, H., & Stead, D. E. (1998). Detection of Ralstonia solanacearum in potato tubers, Solanum dulcamara and associated irrigation water. In P. Prior, C. Allen, & J. G. Elphinstone (Eds.), Bacterial wilt disease: molecular and ecological aspects (pp. 133–139). Berlin, Heidelberg: Springer.Google Scholar
  67. Evans, K., Franco, J., & De Scurrah, M. M. (1975). Distribution of species of potato cyst nematodes in South America. Nematologica, 21, 365–369.CrossRefGoogle Scholar
  68. Evans, K., & Rowe, J. (1998). Distribution and economic importance. In S. B. Sharma (Ed.), The cyst nematodes (pp. 1–30). London: Chapman & Hall.Google Scholar
  69. Ewing. (1981). Heat-stress and the tuberization stimulus. American Potato Journal, 58, 31–49.CrossRefGoogle Scholar
  70. Fabeiro, C., Olalla, F. M. D., & de Juan, J. A. (2001). Yield and size of deficit irrigated potatoes. Agricultural Water Management, 48, 255–266.CrossRefGoogle Scholar
  71. FAO (2012). Food and Agriculture Organisation of the United Nations, Land Resources. http://www.fao.org/nr/land/databasesinformation-systems/en/.
  72. Farag, N. S., Fawzi, F. G., Elsaid, S. I. A., et al. (1986). Streptomycin in relation to potato brown rot control. Acta Phytopathologica et Entomologica Hungaria, 21, 115–122.Google Scholar
  73. Farag, N. S., Lashin, S. M., Abdel-All, R. S., et al. (1982). Antibiotics and control of potato black leg and brown rot diseases. Agricultural Research Review, 60, 149–166.Google Scholar
  74. Felcher, K. J., Coombs, J. J., Massa, A. N., Hansey, C. N., Hamilton, J. P., Veilleux, R. E., Buell, C., & Douches, D. S. (2012). Integration of two diploid potato linkage maps with the potato genome sequence. PLoS One, 7, 4.CrossRefGoogle Scholar
  75. Fereres, E., Orgaz, F., & Gonzalez-Dugo, V. (2011). Reflections on food security under water scarcity. Journal of Experimental Botany, 62, 4079–4086.PubMedCrossRefGoogle Scholar
  76. Fischer, T. R., Byerlee, D., Edmeades, G. O. (2011). Can technology deliver on the yield challenge to 2050? (ftp://ftp.fao.org/docrep/fao/012/ak977e/ak977e00.pdf).
  77. Foster, S. P., Denholm, I., & Devonshire, A. L. (2000). The ups and downs of insecticide resistance in peach-potato aphids (Myzus persicae) in the UK. Crop Protection, 19, 873–879.CrossRefGoogle Scholar
  78. Franco, J., & Evans, K. (1978). Multiplication of some South American and European populations of potato cyst nematodes on potatoes possessing the resistance genes H1, H2 and H3. Plant Pathology, 27, 1–6.CrossRefGoogle Scholar
  79. French, E. R. (1985). Multiple disease resistance in potato cultivars with Solanum phureja and Solanum demissum background. Phytopathology, 75, 1288.Google Scholar
  80. Fry, W. E. (2008). Phytophthora infestans the plant (and R gene) destroyer. Molecular Plant Pathology, 9, 385–402.Google Scholar
  81. Ganal, M. W., Bonierbale, M. W., Roeder, M. S., Park, W. D., & Tanksley, S. D. (1991). Genetic and physical mapping of the patatin genes in potato and tomato. Molecular and General Genetics, 225, 501–509.PubMedGoogle Scholar
  82. Garcia, R., Garcia, A., & Delgado, L. (1999). Distribucion, incidencia y variabilidad de Ralstonia solanacearum, agente causal de la marchitez bacteriana de la papa en el estado Merida, Venezuela. Bioagro, 11, 12–23.Google Scholar
  83. Gaur, P. C., & Pandey, S. K. (2000). Potato improvement in sub-tropics. In S. M. P. Khurana, G. S. Shekhawat, B. P. Singh, & S. K. Pandey (Eds.), Potato, global research & development (pp. 52–63). Shimla: Indian Potato Association.Google Scholar
  84. Gebhardt, C., Bellin, D., Henselewski, H., Lehmann, W., Schwarzfischer, J., & Valkonen, J. P. T. (2006). Marker-assisted pyramidization of major genes for pathogen resistance in potato. Theoretical and Applied Genetics, 112, 1458–1464.PubMedCrossRefGoogle Scholar
  85. Gebhardt, C., Ritter, E., Barone, A., Debener, T., Walkemeier, B., Schachtschabel, U., Kaufman, H., Thompson, R. D., Bonierbale, M. W., Ganal, M. W., Tanksley, S. D., & Salamini, F. (1991). RFLP maps of potato and their alignment with the homeologous tomato genome. Theoretical and Applied Genetics, 83, 49–57.CrossRefGoogle Scholar
  86. Gebhardt, C., & Valkonen, J. P. T. (2001). Organization of genes controlling disease resistance in the potato genome. Annual Review of Phytopathology, 39, 79–102.PubMedCrossRefGoogle Scholar
  87. Gebhardt, C., Walkemeier, B., Henselewski, H., Barakat, A., Delseny, M., & Stuber, K. (2003). Comparative mapping between potato (Solanum tuberosum) and Arabidopsis thaliana reveals structurally conserved domains and ancient duplications in the potato genome. The Plant Journal, 34, 529–541.PubMedCrossRefGoogle Scholar
  88. Giuliano, G., Tavazza, R., Diretto, G., Beyer, P., & Taylor, M. (2008). Metabolic engineering of carotenoid biosynthesis in higher plants. Trends in Biotechnology, 26, 139–145.Google Scholar
  89. Golmirzaie, A. M., Malagamba, P., & Pallais, N. (1994). Breeding potatoes based on true seed propagation. In J. E. Bradshaw & G. R. Mackay (Eds.), Potato genetics (pp. 499–513). Wallingford: CAB International.Google Scholar
  90. Goodey, J. B. (1956). The susceptibility of potato varieties to infestation by the eelworms Ditylenchis destructor and D. dipsaci. Annals of Applied Biology, 44, 16–24.CrossRefGoogle Scholar
  91. Goodrich, C. E. (1863). The origination and test culture of seedling potatoes. Transactions of the New York State Agricultural Society, 23, 89–134.Google Scholar
  92. Graham, D. C., & Harper, P. C. (1966). Effect of inorganic fertilizers on the incidence of potato blackleg disease. Potato Research, 9, 141–145.Google Scholar
  93. Graham, J., Jones, D. A., & Lloyd, A. B. (1979). Survival of Pseudomonas solanacearum Race 3 in plant debris and in latently infected potato tubers. Ecology and Epidemiology, 69, 1100–1103.Google Scholar
  94. Granada, G. A., & Sequeira, L. (1983). Survival of Pseudomonas solanacearum in soil, rhizophere and plant roots. Canadian Journal of Microbiology, 29, 433–440.CrossRefGoogle Scholar
  95. Haas, B., et al. (2009). The genome sequence of the Irish famine pathogen Phytophthora infestans. Nature, 461, 393–398.PubMedCrossRefGoogle Scholar
  96. Hackett, C. A., Bradshaw, J. E., & McNicol, J. W. (2001). Interval mapping of quantitative trait loci in autotetraploid species. Genetics, 159, 1819–1832.PubMedGoogle Scholar
  97. Hanson, A. D., & Gregory, J. F. III (2002). Synthesis and turnover of folates in plants. Current Opinion in Plant Biology, 5, 244–249.Google Scholar
  98. Hartman, G. L., & Elphinstone, J. G. (1992). Advances in the control of Pseudomonas solanacearum race 1 in major food crops. In: A. C. Hayward & G. L. Hartman (Eds.), Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum (pp. 157–177).Google Scholar
  99. Haverkort, A. J., Struik, P. C., Visser, R. G. F., & Jacobsen, E. (2009). Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Research, 52, 249–264.CrossRefGoogle Scholar
  100. Hawkes, J. G. (1990). The potato: evolution biodiversity and genetic resources. Oxford: Belhaven Press. Smithsonian Inst Pr; Subsequent edition (May 1990).Google Scholar
  101. Hawkes, J. G. (1992). In: P. M. Harris (Ed.), The potato crop: the scientific basis for improvement (pp. 1–12). London: Chapman and Hall.Google Scholar
  102. Hawkes, J. G. (1994). Origins of cultivated potatoes and species relationships. In J. E. Bradshaw & G. R. Mackay (Eds.), Potato genetics (pp. 3–42). Wallingford: CAB International.Google Scholar
  103. Haynes, K. G., & Lu, W. (2005). Improvement at the diploid species level. In M. K. Razdan & A. K. Mattoo (Eds.), Genetic improvement of solanaceous crops volume I: potato (pp. 101–114). Enfield: Science Publishers Inc.Google Scholar
  104. Heffner, E. L., Sorrells, M. E., & Jannink, J. L. (2009). Genomic selection for crop improvement. Crop Science, 49, 1–12.CrossRefGoogle Scholar
  105. Hein, I., Gilroy, E. M., Armstrong, M. R., & Birch, P. R. (2009). The zig-zag-zig in oomycete-plant interactions. Molecular Plant Pathology, 10, 547–562.PubMedCrossRefGoogle Scholar
  106. Hijmans, R. J. (2003). The effect of climate change on global potato production. American Journal of Potato Research, 80, 271–280.CrossRefGoogle Scholar
  107. Hijmans, R. J., & Spooner, D. M. (2001). Geographic distribution of wild potato species. American Journal of Botany, 88, 2101–2112.PubMedCrossRefGoogle Scholar
  108. Hirotani, M., Kuroda, R., Suzuki, H., & Yoshikawa, T. (2000). Cloning and expression of UDP-glucose: flavonoid 7-O- glucosyltransferase from hairy root cultures of Scutellaria baicalensis. Planta, 210, 1006–1013.PubMedGoogle Scholar
  109. Hougas, R. W., Peloquin, S. J., & Ross, R. W. (1958). Haploids of the common potato. Journal of Heredity, 49, 103–107.Google Scholar
  110. Hu, X., Karasev, A. V., Brown, C. J., & Lorenzen, J. H. (2009). Sequence characteristics of potato virus Y recombinants. Journal of General Virology, 90, 3033–3041.PubMedCrossRefGoogle Scholar
  111. Huaman, Z., & Spooner, D. M. (2002). Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). American Journal of Botany, 89, 947–965.PubMedCrossRefGoogle Scholar
  112. Huaman, Z., Williams, J. T., Salhuana, W., & Vicent, L. (1977). Descriptors for the cultivated potato and for the maintenance and distribution of germplasm collections. International Board for Plant Genetic Resources, Rome, Italy.Google Scholar
  113. Huang, S. (2005). Discovery and characterization of the major late blight resistance complex in potato. Thesis, The Netherlands: Wageningen University.Google Scholar
  114. Hung, C. Y., Murray, J. R., Ohmann, S. M., & Tong, C. B. S. (1997). Anthocyanin accumulation during potato tuber development. Journal of the American Society for Horticultural Science, 122, 20–23.Google Scholar
  115. Jacobs, J. M. E., van Eck, H. J., Arens, P., Verkerk-Bakker, B., te Lintel Hekkert, B., Bastiaanssen, H. J. M., El-Kharbotly, A., Pereira, A., Jacobsen, E., & Stiekema, W. J. (1995). A genetic map of potato (Solanum tuberosum) integrating molecular markers, including transposons, and classical markers. Theoretical and Applied Genetics, 91, 289–300.CrossRefGoogle Scholar
  116. Janse, J. D. (1996). Potato brown rot in Western Europe: history, present occurrence and some remarks on possible origin, epidemiology and control strategies. OEPP/EPPO Bulletin, 26, 679–695.Google Scholar
  117. Jansky, S. (2000). Breeding for disease resistance in potato. In J. Janick (Ed.), Plant breeding reviews (pp. 69–165). New York: Wiley.Google Scholar
  118. Jarvis, A., Lane, A., & Hijmans, R. J. (2008). The effect of climate change on crop wild relatives. Agriculture, Ecosystems and Environment, 126, 13–23.CrossRefGoogle Scholar
  119. Jefferies, R. A. (1993). Responses of potato genotypes to drought. 1. Expansion of individual leaves and osmotic adjustment. Annals of Applied Biology, 122, 93–104.CrossRefGoogle Scholar
  120. Jeffries, C. J. (1998). FAO/IPGRI technical guidelines for the safe movement of germplasm: No 19, potato. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  121. Jin, L. P., Qu, D. Y., Xie, K. Y., Bian, C. S., & Duan, S. G. (2004). Potato germplasm, breeding studies in China. In: Proceedings of the Fifth World Potato Congress, Kunming, China, 175–178.Google Scholar
  122. Jones, R. A. C. (1985). Further studies on resistance-breaking strains of potato virus X. Plant Pathology, 34, 182–189.CrossRefGoogle Scholar
  123. Jones, R. A. C. (2009). Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions and prospects for control. Virus Research, 141, 113–130.PubMedCrossRefGoogle Scholar
  124. Jones, J. T., Kumar, A., Pylypenko, L. A., Thirugnanasambandam, A., Castelli, L., Chapman, S., Cock, P. J., Grenier, E., Lilley, C. J., Phillips, M. S., & Blok, V. C. (2009). Identification and functional characterisation of effectors in expressed sequence tags from various life cycle stages of the potato cyst nematode Globodera pallida. Molecular Plant Pathology, 10, 815–828.PubMedCrossRefGoogle Scholar
  125. Jupe, F., Pritchard, L., Etherington, G.J., MacKenzie. K., Cock, P.J., Wright, F., et al. (2012). Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics, 13.Google Scholar
  126. Kasai, K., Morikawa, Y., Sorri, V. A., Valkonen, J. P. T., Gebhardt, C., & Watanabe, K. N. (2000). Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes. Genome, 43, 1–8.PubMedGoogle Scholar
  127. Kays, S. J., & Paull, R. E. (2004). Postharvest biology. Athens: Exon Press.Google Scholar
  128. Kimpinski, J., & McRae, K. B. (1988). Relationship of yield and Pratylenchus spp. population densities in Superior and Russet Burbank potato. Journal of Nematology, 20, 34–37.PubMedGoogle Scholar
  129. Kloosterman, B., De Koeyer, D., Griffiths, R., Flinn, B., Steuernagel, B., Scholz, U., Sonnewald, S., Sonnewald, U., Bryan, G. J., Prat, S., Bánfalvi, Z., Hammond, J. P., Geigenberger, P., Nielsen, K. L., Visser, R. G. F., & Bachem, C. W. B. (2008). Genes driving potato tuber initiation and growth: identification based on transcriptional changes using the POCI array. Functional & Integrative Genomics, 8, 329–340.CrossRefGoogle Scholar
  130. Kloosterman, B., Oortwijn, M., Uitdewilligen, J., America, T., de Vos, R., Visser, R. G., et al. (2010). From QTL to candidate gene: genetical genomics of simple and complex traits in potato using a pooling strategy. BMC Genomics, 11.Google Scholar
  131. Knight, T. A. (1807). On raising of new and early varieties of the potato (Solanum tuberosum). Transactions of Horticultural Society. London, 1, 57–59.Google Scholar
  132. Kuhl, J. (2011). Mapping and tagging of simply inherited traits. In J. M. Bradeen & C. Kole (Eds.), Genetics, genomics and breeding of potato (pp. 90–112).Google Scholar
  133. Lamichhane, J. R., Balestra, G. M., & Varvaro, L. (2010). Occurrence of potato Soft Rot caused by Erwinia carotovora (synonym Pectobacterium carotovorum) in Nepal: A First Report. Plant Disease, 94, 382.CrossRefGoogle Scholar
  134. Lawson, C., Kaniewski, W., Haley, L., Rozman, R., Newell, C., Sanders, P., & Tumer, N. E. (1990). Engineering resistance to mixed virus-infection in a commercial potato cultivar - resistance to potato virus X and potato virus Y in transgenic Russet Burbank. Bio/Technology, 8, 127–134.PubMedCrossRefGoogle Scholar
  135. Lemaga, B., Kanzikwera, R., Kakuhenzire, R., Hakiza, J. J., & Manzi, G. (2001). The effect of crop rotation on bacterial wilt incidence and potato tuber yield. African Crop Science Journal, 9, 257–266.Google Scholar
  136. Levy, D., & Veilleux, R. E. (2007). Adaptation of potato to high temperatures and salinity - a review. American Journal of Potato Research, 84, 487–506.CrossRefGoogle Scholar
  137. Li, S., Duan, Y., Guo, T., & Zhang, Y. (2011). Demonstrating a link between nutrient use and water management to improve crop yields and nutrient use efficiency in arid Northwest China. Better Crops with Plant Food, 95, 20–22.Google Scholar
  138. Li, L., Paulo, M. J., van Eeuwijk, F., & Gebhardt, C. (2010). Statistical epistasis between candidate gene alleles for complex tuber traits in an association mapping population of tetraploid potato. Theoretical and Applied Genetics, 121, 1303–1310.PubMedCrossRefGoogle Scholar
  139. Li, S-X., Wang, Z-H., Malhi, S. S., Li, S-Q., Gao, Y-J., & Tian, X-H. (2009). Nutrient and water management effects on crop production, and nutrient and water use efficiency in dryland areas of China. In D. L. Sparks (Ed.), Advances in agronomy (Vol 102, pp. 223–265).Google Scholar
  140. Lopez, O., Cardoso, H., & Fernandez-Northcote, E. N. (1999). Incidencia y distribucion de la marchitez bacteriana de la papa en el Departamento de Tarija. Es. Cochabamba (Bolivia). Fundacion Proyecto Manejo Integrado de la Marchitez Bacteriana de la Papa (PROINPA).Google Scholar
  141. Lorenzen, J. H., Meacham, T., Berger, P. H., Shiel, P. J., Crosslin, J. M., Hamm, P. B., & Kopp, H. (2006). Whole genome characterization of Potato virus Y isolates collected in the western USA and their comparison to isolates from Europe and Canada. Archives of Virology, 151, 1055–1074.PubMedCrossRefGoogle Scholar
  142. Lyon, G. D. (1989). The biochemical basis of resistance of potatoes to soft rot Erwinia spp.- a review. Plant Pathology, 38, 313–339.CrossRefGoogle Scholar
  143. Mackay, G. R. (2005). Propagation by traditional breeding methods. In M. K. Razdan & A. K. Mattoo (Eds.), Genetic improvement of solanaceous crops volume I: potato (pp. 65–81). Enfield: Science Publishers, Inc.Google Scholar
  144. Malcolmson, J. F. (1969). Races of Phytophthora infestans occurring in Great Britain. Transactions of the British Mycological Society, 53, 417–423.CrossRefGoogle Scholar
  145. Marathe, R., Anandalakshimi, R., Liu, Y., & Dinesh-Kumar, S. P. (2002). The tobacco mosaic virus resistance gene, N. Molecular. Plant Pathology, 3, 167–172.Google Scholar
  146. Martin, M. J., Riedel, R. M., & Rowe, R. C. (1982). Verticillium dahlia and Pratylenchus penetrans: Interactions in the early dying complex of potato in Ohio. Phytopathology, 72, 640–644.CrossRefGoogle Scholar
  147. Massa, A. N., Lin, H., Bryan, G. J., Giuliano, G., & Buell, C. R. (2011). Transcriptome sequencing and analysis of the Solanum tuberosum Group Phureja clone DM1-3 516R44. The Plant Genome, 6(10), e26801.Google Scholar
  148. McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379.PubMedCrossRefGoogle Scholar
  149. McKey, D., Elias, M., Pujol, B., & Duputié, A. (2010). The evolutionary ecology of clonally propagated domesticated plants. New Phytologist, 186, 318–332.PubMedCrossRefGoogle Scholar
  150. Menendez, C. M., Ritter, E., Schäfer-Pregl, R., Walkemeier, B., Kalde, A., Salamini, F., & Gebhardt, C. (2002). Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes. Genetics, 162, 1423–1434.PubMedGoogle Scholar
  151. Menzel, C. M. (1985). Tuberization in potato at high-temperatures - interaction between temperature and irradiance. Annals of Botany, 55, 35–39.Google Scholar
  152. Michel, V. V., & Mew, T. W. (1998). Effect of a soil amendment on the survival of Ralstonia solanacearum in different soils. Phytopathology, 88, 300–305.PubMedCrossRefGoogle Scholar
  153. Milbourne, D., Meyer, R. C., Collins, A. J., Ramsay, L. D., Gebhardt, C., & Waugh, R. (1998). Isolation, characterisation and mapping of simple sequence repeat loci in potato. Molecular and General Genetics, 259, 233–245.PubMedCrossRefGoogle Scholar
  154. Monro, J. A. (2003). Redefining the glycemic index for dietary management of postprandial glycemia. Journal of Nutrition, 133, 4256–4258.PubMedGoogle Scholar
  155. Monro, J. A., Mishra, S., Blandford, E., Anderson, J., & Genet, R. (2008). Potato genotype differences in nutritionally distinct starch fractions after cooking and cooking plus cooling. Journal of Food Composition and Analysis, 22, 539–545.CrossRefGoogle Scholar
  156. Muller, K. O., & Black, W. (1951). Potato breeding for resistance to blight and virus diseases during the last hundred years. Zeitschrift für Pflanzenzuchtung, 31, 305–318.Google Scholar
  157. Murakoshi, S., & Takahashi, M. (1984). Trials of some control of tomato bacterial wilt caused by Pseudomonas solanacearum. Bulletin of the Kanagawa Horticultural Experiment Station Issue, 31, 50–56.Google Scholar
  158. Navarro, C., Abelenda, J. A., Cruz-Oro, E., Cuellar, C. A., Tamaki, S., Silva, J., Shimamoto, K., & Prat, S. (2012). Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature, 478, 119–132.CrossRefGoogle Scholar
  159. Nesterenko, S., & Sink, K. (2003). Carotenoid profiles of potato breeding lines and selected cultivars. HortScience, 38, 1173–1177.Google Scholar
  160. Ngadze, E., Coutinho, T. A., & van der Waals, J. E. (2010). First report of soft rot of potatoes caused by Dickeya dadantii in Zimbabwe. Plant Disease, 94, 1263.CrossRefGoogle Scholar
  161. Nyangeri, J. B., Gathuru, E. M., & Mukunya, D. M. (1984). Effect of latent infection on the spread of bacterial wilt of potatoes in Kenya. Tropical Pest Management, 30, 163–165.CrossRefGoogle Scholar
  162. Oberhagemann, P., Chatot-Balandras, C., Schäfer-Pregl, R., Wegener, D., Palomino, C., Salamini, F., Bonnel, E., & Gebhardt, C. (1999). A genetic analysis of quantitative resistance to late blight in potato: towards marker-assisted selection. Molecular Breeding, 5, 399–415.CrossRefGoogle Scholar
  163. Ortiz, R. (1997). Breeding for potato production from true seed. Plant Breeding Abstracts, 67, 1355–1360.Google Scholar
  164. Ortiz, R. (2001). The state of the use of potato genetic diversity. In H. D. Cooper, C. Spillane, & T. Hodgkin (Eds.), Broadening the genetic base of crop production (pp. 181–200). Wallingford: CAB International.CrossRefGoogle Scholar
  165. Perombelon, M. C. M. (2002). Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathology, 51, 1–12.CrossRefGoogle Scholar
  166. Pérombelon, M. C. M., & Kelman, A. (1980). Ecology of the soft rot erwinias. Annual Review of Phytopathology, 18, 361–387.CrossRefGoogle Scholar
  167. Phillips, M. S., & Trudgill, D. L. (1998). Variation in virulence, in terms of quantitative reproduction of Globodera pallida populations, from Europe and South America, in relation to resistance from Solanum vernei and S. tubersosum ssp andigena CPC 2802. Nematologica, 44, 409–423.CrossRefGoogle Scholar
  168. Plaisted, R. L. (1987). Advances and limitations in the utilization of Neotuberosum in potato breeding. In G. J. Jellis & D. E. Richardson (Eds.), The production of new potato varieties (pp. 186–196). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  169. Plaisted, R. L., & Hoopes, R. W. (1989). The past record and future prospects for the use of exotic potato germplasm. American Potato Journal, 66, 603–627.CrossRefGoogle Scholar
  170. Ploeg, A. T., Brown, D. J. F., & Robinson, D. J. (1992). Acquisition and subsequent transmission of tobacco rattle virus isolates by Paratrichodorus and Trichodorus nematode species. European Journal of Plant Pathology, 98, 291–300.Google Scholar
  171. Porter, G. A., Opena, G. B., Bradbury, W. B., McBurnie, J. C., & Sisson, J. A. (1999). Soil management and supplemental irrigation effects on potato: I. Soil properties, tuber yield, and quality. Agronomy Journal, 91, 416–425.CrossRefGoogle Scholar
  172. Prins, M., Laimer, M., Noris, E., Schubert, J., Wassenegger, M., & Tepfer, M. (2008). Strategies for antiviral resistance in transgenic plants. Molecular Plant Pathology, 9, 73–83.PubMedGoogle Scholar
  173. Renault, D., & Wallender, W. W. (2000). Nutritional water productivity and diets. Agricultural Water Management, 45, 275–296.CrossRefGoogle Scholar
  174. Reynolds, M. P., Ewing, E. E., & Owens, T. G. (1990). Photosynthesis at high temperature in tuber-bearing Solanum species. 1. A comparison between accessions of contrasting heat tolerance. Plant Physiology, 93, 791–797.PubMedCrossRefGoogle Scholar
  175. Rickert, A. M., Kim, J. H., Meyer, S., Nagel, A., Ballvora, A., Oefner, P. J., & Gebhardt, C. (2013). First-generation SNP/InDel markers tagging loci for pathogen resistance in the potato genome. Plant Biotechnology Journal, 1(6), 399–410.CrossRefGoogle Scholar
  176. Riga, E., & Neilson, R. (2005). First report of the stubby-root nematode Paratrichodorus teres, from potato in the Columbia basin of Washington state. Plant Disease, 89, 1361.CrossRefGoogle Scholar
  177. Robert, Y., Woodford, J. A. T., & Ducray-Bourdin, D. G. (2000). Some epidemiological approaches to the control of aphid-borne virus diseases in seed potato crops in northern Europe. Virus Research, 71, 33–47.PubMedCrossRefGoogle Scholar
  178. Rodriguez, F., Ghislain, M., Clausen, A. M., Jansky, S. H., & Spooner, D. M. (2010). Hybrid origins of cultivated potatoes. Theoretical and Applied Genetics, 121, 1187–1198.PubMedCrossRefGoogle Scholar
  179. Römer, S., Lubeck, J., Kauder, F., Steiger, S., Adomat, C., & Sandmann, G. (2002). Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metabolic Engineering, 4, 263–272.PubMedCrossRefGoogle Scholar
  180. Rommens, C. (2012). Reintroduction of genetically engineered potatoes into the U.S. market. APS Annual Meeting Supplement 4. Phytopathology, 102(S4), S151.Google Scholar
  181. Ross, H. (1986). Potato breeding – problems and perspectives. Advances in plant breeding, 13. Berlin and Hamburg: Paul Parey.Google Scholar
  182. Sacco, M. A., Koropacka, K., Grenier, E., Jaubert, M. J., Blanchard, A., Goverse, A., Smant, G., & Moffett, P. (2009). The cyst nematode SPRYSEC protein RBP-1 elicits Gpa2- and RanGAP2-dependent plant cell death. PLoS Pathogens, 5, e1000564.PubMedCrossRefGoogle Scholar
  183. Schäfer-Pregl, R., Ritter, E., Concilio, L., Hesselbach, J., Lovatti, L., Walkemeier, B., Thelen, H., Salamini, F., & Gebhardt, C. (1998). Analysis of quantitative trait loci (QTLs) and quantitative trait alleles (QTAs) for potato tuber yield and starch content. Theoretical and Applied Genetics, 97, 834–846.CrossRefGoogle Scholar
  184. Schäfer-Pregl, R., Salamini, F., & Gebhardt, C. (1996). Models for mapping quantitative trait loci (QTLs) in progeny of non-inbred parents and their behaviour in the presence of distorted segregation ratios. Genetic Research, 67, 43–54.CrossRefGoogle Scholar
  185. Schornack, S., Huitema, E., Cano, L. M., Bozkurt, T. O., Oliva, R., et al. (2009). Ten things to know about oomycete effectors. Molecular Plant Pathology, 10, 795–803.PubMedCrossRefGoogle Scholar
  186. Scurrah, M. I., Niere, B., & Bridge, J. (2005). Nematode parasites of Solanum and sweet potatoes. In M. Luc, R. A. Sikora & J. Bridge (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (pp. 193–220). CABI Publishing.Google Scholar
  187. Seinhorst, J. W. (1982). The relationship in field experiments between population density of Globodera rostochiensis before planting potatoes and yield of potato tubers. Nematologica, 28, 277–284.CrossRefGoogle Scholar
  188. Serfontein, S., Logan, C., Swanepoel, A. E., Boelema, B. H., & Theron, D. J. (1991). A potato wilt disease in South Africa caused by Erwinia carotovora subspecies carotovora and E. chrysanthemi. Plant Pathology, 40, 382–386.CrossRefGoogle Scholar
  189. Serrano, C., Arce-Johnson, P., Torres, H., et al. (2000). Expression of the chicken lysozyme gene in potato enhances resistance to infection by Erwinia carotovora subsp. atroseptica. American Journal of Potato Research, 77, 191–199.CrossRefGoogle Scholar
  190. Simko, I., Haynes, K. G., & Jones, R. W. (2006). Assessment of linkage disequilibrium in potato genome with single nucleotide polymorphism markers. Genetics, 173(4), 2237–2245.PubMedCrossRefGoogle Scholar
  191. Simmonds, N. W. (1969). Prospects of potato improvement. Scottish Plant Breeding Station Forty-Eighth Annual Report, 1968–69, 18–38.Google Scholar
  192. Simmonds, N. W. (1997). A review of potato propagation by means of seed, as distinct from clonal propagation by tubers. Potato Research, 40, 191–214.CrossRefGoogle Scholar
  193. Singh, R. P., Valkonen, J. P. T., Gray, S. M., Boonham, N., Jones, R. A. C., Kerlan, C., & Schubert, J. (2008). The Naming of Potato virus Y strains infecting potato. Archives of Virology, 153, 1–13.PubMedCrossRefGoogle Scholar
  194. Smilde, W. D., Brigneti, G., Jagger, L., Perkins, S., & Jones, J. D. G. (2005). Solanum mochiquense chromosome IX carries a novel late blight resistance gene Rpi-moc1. Theoretical and Applied Genetics, 110, 252–258.PubMedCrossRefGoogle Scholar
  195. Solomon-Blackburn, R. M., & Barker, H. (2001). A review of host major-gene resistance to potato viruses X, Y, A and V in potato:genes, genetics and mapped locations. Heredity, 86, 8–16.PubMedCrossRefGoogle Scholar
  196. Spooner, D. M., & Hijmans, R. J. (2001). Potato systematics and germplasm collecting, 1989–2000. American Journal of Potato Research, 78, 237–268.CrossRefGoogle Scholar
  197. Spooner, D. M., Nunez, J., Trujillo, G., Herrera, M. D. R., Guzman, F., & Ghislain, M. (2007). Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proceedings of the National Academy of Sciences of the United States of America, 49, 19398–19403.CrossRefGoogle Scholar
  198. Storey, M. (2007). The harvested crop. In D. Vreugdenhil (Ed.), Potato biology and biotechnology: advances and perspectives (pp. 441–470). Amsterdam: Elsevier.CrossRefGoogle Scholar
  199. Swanepoel, A. E. (1990). The effect of temperature on the development of wilting and on progeny tuber infection of potatoes inoculated with South African strains of biovar 2 and 3 of Pseudomonas solanacearum. Potato Research, 33, 287–290.CrossRefGoogle Scholar
  200. Tanksley, S. D., Ganal, M. W., Prince, J. P., de Vincente, M. C., Bonierbale, M. W., Broun, P., Fulton, T. M., Giovannoni, J. J., Grandillo, S., Martin, G. B., Messeguer, R., Miller, J. C., Miller, L., Paterson, A. H., Pineda, O., Roder, M. S., Wing, R. A., Wu, W., & Young, N. D. (1992). High density molecular linkage maps of the tomato and potato genomes. Genetics, 132, 1141–1160.PubMedGoogle Scholar
  201. Tarn, T. R., Tai, G. C. C., De Jong, H., Murphy, A. M., & Seabrook, J. E. A. (1992). Breeding potatoes for long-day, temperate climates. In J. Janick (Ed.), Plant breeding reviews (9th ed., pp. 217–332). New York: Wiley.Google Scholar
  202. Taylor, M. A., & Ramsay, G. (2005). Carotenoid biosynthesis in plant storage organs: recent advances and prospects for improving plant food quality. Physiology Plant, 124, 143–151.CrossRefGoogle Scholar
  203. Terta, M., El Karkouri, A., Ait M’hand, R., Achbani, E., Barakate, M., Amdan, M., Annajar, B., El Hassouni, M., Val, F., Bouteau, F., & Ennaji, M. M. (2011). Occurrence of Pectobacterium carotovorum strains isolated from potato soft rot in Morocco. Cellular and Molecular Biology, 56, OL1324–OL1333.Google Scholar
  204. Teulon, D. A. J., Workman, P. J., Thomas, K. K., & Neilson, M. C. (2009). Bactericiera cockerelli: incursion, dispersal and current distribution on vegetable crops in New Zealand. New Zealand Plant Protection, 62, 136–144.Google Scholar
  205. The Potato Genome Sequencing Consortium. (2011). Genome sequence and analysis of the tuber crop potato. Nature, 475, 189–197.CrossRefGoogle Scholar
  206. The Tomato Genome Consortium. (2012). The tomato genome provides insights into fleshy fruit evolution. Nature, 485, 635–641.CrossRefGoogle Scholar
  207. Toth, I. K., van der Wolf, J. M., Saddler, G., Lojkowska, E., Hélias, V., Pirhonen, M., Tsror Lahkim, L., & Elphinstone, J. G. (2011). Dickeya species: an emerging problem for potato production in Europe. Plant Pathology, 60, 385–399.CrossRefGoogle Scholar
  208. Toxopeus, H. J. (1964). Treasure-digging for blight resistance in potatoes. Euphytica, 13, 206–222.CrossRefGoogle Scholar
  209. Trivedi, T. P., & Rajagopal, D. (1992). Distribution, biology, ecology and management of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Tropical Pest Management, 38, 279–285.CrossRefGoogle Scholar
  210. Turner, S. J., & Evans, K. (1998). The origins, global distribution and biology of potato cyst nematodes (Globodera rostochiensis (Woll.) and Globodera pallida Stone). In R. J. Marks & B. B. Brodie (Eds.), Potato cyst nematodes (pp. 7–26).Google Scholar
  211. Vada, M. E. (1994). Environmental stress and its impact on potato yield. In J. E. Bradshaw & G. R. Mackay (Eds.), Potato genetics (pp. 239–261). Wallingford: CAB International.Google Scholar
  212. Valkonen, J. P. T. (2007). Viruses: Economical losses and biotechnological potential. In D. Vreugdenhil (Ed.), Potato biology and biotechnology (pp. 619–641). New York: Elsevier.CrossRefGoogle Scholar
  213. Van Dam, J., Kooman, P. L., & Struik, P. C. (1996). Effects of temperature and photoperiod on early growth and final number of tubers in potato (Solanum tuberosum L.). Potato Research, 39, 51–62.CrossRefGoogle Scholar
  214. van der Merwe, J. J., Coutinho, T. A., Korsten, L., & van der Waals, J. E. (2010). Pectobacterium carotovorum subsp. brasiliensis causing blackleg on potatoes in South Africa. European Journal of Plant Pathology, 126, 175–185.CrossRefGoogle Scholar
  215. Van Eck, H. J., Jacobs, J. M. E., Stam, P., Ton, J., Stiekema, W. J., & Jacobsen, E. (1994). Multiple alleles for tuber shape in diploid potato detected by qualitative and quantitative genetic analysis using RFLPs. Genetics, 137, 303–309.PubMedGoogle Scholar
  216. Van Eck, H. J., Jacobs, J. M. E., van den Berg, P. M. M. M., Stiekema, W. J., & Jacobsen, E. (1994). The inheritance of anthocyanin pigmentation in potato (Solanum tuberosum L.) and mapping of tuber skin colour loci using RFLPs. Heredity, 73, 410–421.CrossRefGoogle Scholar
  217. Van Eck, H. J., Jacobs, J. M. E., van Dijk, J., Stiekema, W. J., & Jacobsen, E. (1993). Identification and mapping of three flower colour loci of potato (S. tuberosum L.) by RFLP analysis. Theoretical and Applied Genetics, 86, 295–300.CrossRefGoogle Scholar
  218. Van Elsas, J. D., Kastelein, P., van Bekkum, P., van der Wolf, J. M., de Vries, P. M., & Overbeek, L. S. (2000). Survival of Ralstonia solanacearum biovar 2, the causative agent of potato brown rot, in field and microcosm soils in temperate climates. Phytopathology, 90, 1338–1366.Google Scholar
  219. van Os, H., Andrzejewski, S., Bakker, E., Barrena, I., Bryan, G. J., Caromel, B., Ghareeb, B., Isidore, E., De Jong, W., van Koert, P., Lefebvre, V., Milbourne, D., Ritter, E., van der Voort, J. N. A. M. R., Rousselle-Bourgeois, F., van Vliet, J., Waugh, R., Visser, R. G. F., Bakker, J., & van Eck, H. (2006). Construction of a 10,000 marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and genomewide physical map. Genetics, 173, 1075–1087.PubMedCrossRefGoogle Scholar
  220. Verbeek, M., Piron, P. G. M., Dullemans, A. M., Cuperus, C., & van der Vlugt, R. A. A. (2009). Determination of aphid transmission efficiencies for N, NTN and Wilga strains of Potato virus Y. Annals of Applied Biology, 156, 39–49.CrossRefGoogle Scholar
  221. Visker, M. H. P. W., Keizer, L. C. P., Van Eck, H. J., Jacobsen, E., Colon, L. T., & Struik, P. C. (2003). Can the QTL for the late blight resistance on potato chromosome 5 be attributed to foliage maturity type? Theoretical and Applied Genetics, 106, 317–325.PubMedGoogle Scholar
  222. Vleeshouwers, V. G., Raffaele, S., Vossen, J., Champouret, N., Oliva, R., Segretin, M. E., Rietman, H., Cano, L. M., Lokossou, A., Kessel, G., et al. (2011). Understanding and exploiting late blight resistance in the age of effectors. Annual Review of Phytopathology, 49, 25.21–25.25.CrossRefGoogle Scholar
  223. Vos, P., Hogers, R., Bleeker, M., Reijans, M., Vandelee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., & Zabeau, M. (1995). Aflp – A new technique for DNA-fingerprinting. Nucleic Acids Research, 23, 4407–4414.PubMedCrossRefGoogle Scholar
  224. Wakil, S. M., & Oyinlola, K. A. (2011). Diversity of pectinolytic bacteria causing soft rot disease of vegetables in Ibadan, Nigeria. Journal of Applied Biosciences, 38, 2540–2550.Google Scholar
  225. Walker, T., & Collion, M.-H. (1998). Priority setting at CIP for the 1998–2000 medium term plan. Lima: International Potato Centre.Google Scholar
  226. Wang, X., Liu, H., Li, J., et al. (2011). Identification and characterization of Pectobacterium species causing potato blackleg disease in North China. Phytopathology, 101, S187–S188.Google Scholar
  227. Wastie, R. L. (1991). Breeding for resistance. Advanced Plant Pathology, 7, 193–224.Google Scholar
  228. Wegener, C. (2001). Transgenic potatoes expressing an Erwinia pectate lyase gene—results of a 4-year field experiment. Potato Research, 44, 401–410.CrossRefGoogle Scholar
  229. Westermann, D. T. (2005). Nutritional requirements of potatoes. American Journal of Potato Research, 82, 301–307.CrossRefGoogle Scholar
  230. Whisson, S. C., Boevink, P. C., Moleleki, L., Avrova, A. O., Morales, J., Gilroy, E. M., Armstrong, M. R., Grouffaud, S., van West, P., Chapman, S., Hein, I., Toth, I. K., Pritchard, L., & Birch, P. R. J. (2007). A translocation signal for delivery of oomycete effector proteins inside host plant cells. Nature, 450, 115–118.PubMedCrossRefGoogle Scholar
  231. Wiesenborn, D. P., Orr, P. H., Casper, H. H., & Tacke, B. K. (1994). Potato starch paste behavior as related to some physical/chemical properties. Journal of Food Science, 59, 644–648.CrossRefGoogle Scholar
  232. Wolf, S., Marani, A., & Rudich, J. (1991). Effect of temperature on carbohydrate metabolism in potato plants. Journal of Experimental Botany, 42, 619–625.CrossRefGoogle Scholar
  233. Wolters, A. M., Uitdewilligen, J. G., Kloosterman, B. A., Hutten, R. C., Visser, R. G., & van Eck, H. J. (2010). Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers. Plant Molecular Biology, 73, 659–671.PubMedCrossRefGoogle Scholar
  234. Xu, P., Chen, F., Mannas, J. P., Feldman, T., Sumner, L. W., & Roossinck, M. J. (2008). Virus infection improves drought tolerance. New Phytologist, 180, 911–921.PubMedCrossRefGoogle Scholar
  235. Yeh, B. P., & Peloquin, S. J. (1965). Pachytene chromosomes of the potato (Solanum tuberosum group andigena). American Journal of Botany, 52, 1014–1020.CrossRefGoogle Scholar
  236. Zhou, T., Chen, D., Li, C., Sun, Q., Li, L., Liu, F., Shen, Q., & Shen, B. (2012). Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiological Research, 167, 388–394.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht and International Society for Plant Pathology 2012

Authors and Affiliations

  • Paul R. J. Birch
    • 1
    • 2
  • Glenn Bryan
    • 1
  • Brian Fenton
    • 1
  • Eleanor M. Gilroy
    • 1
  • Ingo Hein
    • 1
  • John T. Jones
    • 1
  • Ankush Prashar
    • 1
  • Mark A. Taylor
    • 1
  • Lesley Torrance
    • 1
  • Ian K. Toth
    • 1
  1. 1.Cell and Molecular Sciences, James Hutton Institute (JHI)DundeeUK
  2. 2.Division of Plant SciencesUniversity of Dundee (at JHI)DundeeUK

Personalised recommendations