Food Security

, Volume 4, Issue 2, pp 163–179 | Cite as

The socioeconomics of food crop production and climate change vulnerability: a global scale quantitative analysis of how grain crops are sensitive to drought

  • Elisabeth Simelton
  • Evan D. G. Fraser
  • Mette Termansen
  • Tim G. Benton
  • Simon N. Gosling
  • Andrew South
  • Nigel W. Arnell
  • Andrew J. Challinor
  • Andrew J. Dougill
  • Piers M. Forster
Original Paper

Abstract

Many studies warn that climate change may undermine global food security. Much work on this topic focuses on modelling crop-weather interactions but these models do not generally account for the ways in which socio-economic factors influence how harvests are affected by weather. To address this gap, this paper uses a quantitative harvest vulnerability index based on annual soil moisture and grain production data as the dependent variable in a Linear Mixed Effects model with national scale socio-economic data as independent variables for the period 1990–2005. Results show that rice, wheat and maize production in middle income countries were especially vulnerable to droughts. By contrast, harvests in countries with higher investments in agriculture (e.g. higher amounts of fertilizer use) were less vulnerable to drought. In terms of differences between the world’s major grain crops, factors that made rice and wheat crops vulnerable to drought were quite consistent, while those of maize crops varied considerably depending on the type of region. This is likely due to the fact that maize is produced under very different conditions worldwide. One recommendation for reducing drought vulnerability risks is coordinated development and adaptation policies, including institutional support that enables farmers to take proactive action.

Keywords

Drought vulnerability index Crop failure Soil moisture Food security Transition economies Linear model Adaptive capacity 

Notes

Acknowledgements

We would like to thank Jami Dixon for collecting data, and Esben Almquist and Alexander Walther for their Matlab scripts. This research was funded by grants from: the Natural Environment Research Council (NERC) under the QUEST programme (grant number NE/E001890/1); the Rural Economy and Land Use Programme which is a collaboration between the Economic and Social Research Council (ESRC), the Biotechnology and Biological Sciences Research Council (BBSRC); and the Centre for Climate Change Economic and Policy, which is funded by the Economics and Social Research Council. We are grateful to two anonymous reviewers for their constructive comments.

Supplementary material

12571_2012_173_MOESM1_ESM.doc (62 kb)
ESM 1 (DOC 61 kb)
12571_2012_173_MOESM2_ESM.doc (50 kb)
ESM 2  (DOC 50 kb)

References

  1. Antwi-Agyei, P., Fraser, E. D. G., Dougill, A., Stringer, L., & Simelton, E. (2011). Mapping food system vulnerability to drought using rainfall, yield and socioeconomic data for Ghana. Applied Geography, 32, 324–334.CrossRefGoogle Scholar
  2. Arnell, N. W. (1999). A simple water balance model for the simulation of streamflow over a large geographic domain. Journal of Hydrology, 217, 314–335. doi: 10.1016/S0022-1694(99)00023-2.CrossRefGoogle Scholar
  3. Beddington, J. (2009). Food, energy, water and the climate: A perfect storm of global events? Government Office for Science. Full text available at: http://www.bis.gov.uk/assets/bispartners/goscience/docs/p/perfect-storm-paper.pdf.
  4. Brooks, N., Adger, N. W., & Kelly, M. P. (2005). The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Global Environmental Change Part A, 15(2), 151–163.CrossRefGoogle Scholar
  5. Challinor, A. J., Simelton, E. S., Fraser, E. D., Hemming, D., Collins, M. (2010). Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China. Environmental Research Letters, 5, doi: 10.1088/1748-9326/5/3/034012.
  6. Chen, C. C., McCarl, B., & Hill, H. (2002). Agricultural value of ENSO information under alternative phase definition. Climatic Change, 54, 305–325.CrossRefGoogle Scholar
  7. Conway, D., Persechino, A., Ardoin-Bardin, S., Hamandawana, H., Dieulin, C., & Mahe, G. (2009). Rainfall and water resources variability in sub-Saharan Africa during the 20th century. Journal of Hydrometeorology, 10, 41–59. doi: 10.1175/2008JHM1004.1.CrossRefGoogle Scholar
  8. Conway, D., & Schipper L. E. F. (2011). Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia. Global Environmental Change, 21, 227–237.Google Scholar
  9. Corzo Perez, G. A., van Huijgevoort, M. H. J., Voß, F., & van Lanen, H. A. J. (2011). On the spatio-temporal analysis of hydrological droughts from global hydrological models. Hydrology and Earth System Sciences, 15, 2963–2978.CrossRefGoogle Scholar
  10. Crawley, M. J. (2007). The R Book. Chichester: Wiley.CrossRefGoogle Scholar
  11. Devereux, S. (2009). Why does famine persist in Africa? Food Security, 1, 25–35.CrossRefGoogle Scholar
  12. Eakin, H. (2005). Institutional change, climate risk, and rural vulnerability: cases from Central Mexico. World Development, 33(11), 1923–1938.CrossRefGoogle Scholar
  13. EarthTrends (2008). The environmental information portal. World Resources Institute. http://earthtrends.wri.org/searchable_db/index.php?theme=4.
  14. Ericksen, P. et al. (2011). Mapping hotspots of climate change and food insecurity in the global tropics. Copenhagen: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).Google Scholar
  15. Erigayama, N., Smakhtin, V., & Gamage, N. (2009). Mapping drought patterns and impacts: a global perspective. Colombo: International Water Management Institute.Google Scholar
  16. FAO (2003). Trade reforms and food security. Conceptualizing the linkages, Commodity Policies and Projections Service, Commodities and Trade Division. Rome, Italy. 296pp.Google Scholar
  17. FAO (2008). FAOSTAT Online database. Food and Agriculture Organization of the United Nations. http://faostat.fao.org/default.aspx.
  18. Fazey, I., Gamarra, J. G. P., Fischer, J., Reed, M. S., Stringer, L. C., & Christie, M. (2010). Adaptation strategies for reducing vulnerability to future environmental change. Frontiers in Ecology and the Environment, 8(8), 414–422. doi: 10.1890/080215.CrossRefGoogle Scholar
  19. Foley, J. A., et al. (2011). Solutions for a cultivated planet. Nature. doi: 10.1038/nature10452.
  20. Fraser, E. (2007). Travelling in antique lands: Studying past famines to understand present vulnerabilities to climate change. Climate Change, 83, 495–514.CrossRefGoogle Scholar
  21. Fraser, E. D. G., Rimas, A. (2011). The psychology of food riots. Foreign Affairs, January 30, http://www.foreignaffairs.com/articles/67338/evan-fraser-and-andrew-rimas/the-psychology-of-food-riots.
  22. Fraser, E. D. G., & Stringer, L. C. (2009). Explaining agricultural collapse: macro-forces, micro-crises and the emergence of land use vulnerability in southern Romania. Global Environmental Change, 19(1), 45–53.CrossRefGoogle Scholar
  23. Fraser, E. D. G., et al. (2008). Quantifying socioeconomic characteristics of drought-sensitive regions: evidence from Chinese provincial agricultural data. Comptes Rendus Geoscience, 340(9–10), 679–688.CrossRefGoogle Scholar
  24. Fraser, E. D. G, Dougill, A. J., Hubacek, K., Quinn, C. H., Sendzimir, J., Termansen, M. (2011). Assessing vulnerability, resilience and adaptive capacity to climate change in arid/semi-arid social ecological systems. Ecology and Society 16(3), Art. 3.Google Scholar
  25. Gbetibouo, G., Ringler, C. (2009). Mapping South African farming sector vulnerability to climate change and variability: A subnational assessment. IFPRI Discussion Paper 885. International Food Policy Research Institute Washington, DC.Google Scholar
  26. Gosling, S. N., & Arnell, N. W. (2011). Simulating current global river runoff with a global hydrological model: model revisions, validation, and sensitivity analysis. Hydrological Processes, 25, 1129–1145.CrossRefGoogle Scholar
  27. Gosling, S. N., Bretherton, D., Haines, K., Arnell, N. W. (2010). Global hydrology modelling and uncertainty: running multiple ensembles with a campus grid. Philosophical Transactions of the Royal Society A, 368, 4005–4021. doi:  10.1098/rsta.2010.0164.Google Scholar
  28. Haddeland, I., et al. (2011). Multimodel estimate of the global terrestrial water balance: setup and first results. Journal of Hydrometeorology, 12, 869–884.CrossRefGoogle Scholar
  29. Hafner, S. (2003). Trends in maize, rice, and wheat yields for 188 nations over the past 40 years: a prevalence of linear growth. Agriculture, Ecosystems and Environment, 97, 275–283.CrossRefGoogle Scholar
  30. Hazell, P., & Wood, S. (2007). Drivers of change in global agriculture. Philosophical Transactions of the Royal Society B. doi: 10.1098/rstb.2007.2166.
  31. Hollinger, S. E., & Isard, S. A. (1994). A soil moisture climatology of Illinois. Journal of Climate, 7, 822–833.CrossRefGoogle Scholar
  32. IPCC (2001). Glossary, Fourth Assessment Report, Working Group 2. Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. http://www.ipcc.ch/pdf/glossary/ar4-wg2.pdf
  33. IPCC. (2007). Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  34. Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. doi: 10.1127/0941-2948/2006/0130.CrossRefGoogle Scholar
  35. Leff, B., Ramankutty, N., Foley, J. A. (2004). Geographic distribution of major crops across the world. Global Biogeochemical Cycles 18, GB 1009.Google Scholar
  36. Li, Y. P., Ye, W., Wang, M., & Yan, X. D. (2009). Climate change and drought: a risk assessment of crop-yield impacts. Climate Research, 39, 31–46.CrossRefGoogle Scholar
  37. Lobell, B. D., & Field, C. B. (2007). Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2, 014002.CrossRefGoogle Scholar
  38. McMahon, T. A., Peel, M. C., Vogel, R. M., & Pegram, G. G. S. (2007). Global streamflows—Part 3: Country and climate zone characteristics. Journal of Hydrology, 347, 272–291.CrossRefGoogle Scholar
  39. Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1–2), 202–216.CrossRefGoogle Scholar
  40. Nelson, G., et al. (2010). Food security, farming, and climate change to 2050: Scenarios, results, policy options. IFPRI. Washington DC. 155 pp http://www.ifpri.org/sites/default/files/publications/rr172.pdf.
  41. Nijssen, B., Schnur, R., & Lettenmaier, D. P. (2001). Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93. Journal of Climate, 14, 1790–1808.CrossRefGoogle Scholar
  42. O’Brien, K., & Leichenko, R. M. (2000). Double exposure: assessing the impacts of climate change within the context of economic globalization. Global Environmental Change, 10, 221–232.CrossRefGoogle Scholar
  43. OECD-FAO (2009). OECD-FAO Agricultural outlook Highlights No1 Feb 2009. OECD/FAO.Google Scholar
  44. Ohno, K. (2009). Avoiding the middle-income trap: renovating industrial policy formulatoin in Vietnam. ASEAN Economic Bulletin, 26(1), 25–43.CrossRefGoogle Scholar
  45. Pandey, V. P., Babel, M. S., Shrestha, S., & Kazama, F. (2011). A framework to assess adaptive capacity of the water resources system in Nepalese river basins. Ecological Indicators, 11(2), 480–488.CrossRefGoogle Scholar
  46. Patt, A., & Gwata, C. (2002). Effective seasonal climate forecast applications: examining constraints for subsistence farmers in Zimbabwe. Global Environmental Change, 12(3), 185–195.CrossRefGoogle Scholar
  47. Rudel, T. K., et al. (2009). Agricultural intensification and changes in cultivated areas, 1970–2005. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20675–20680. doi: 10.1073/pnas.0812540106.PubMedCrossRefGoogle Scholar
  48. Schneider, T., & Neumaier, A. (2001). Algorithm 808: ARfit—A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27(1), 58–65.CrossRefGoogle Scholar
  49. Siebert, S., Doll, P., Hoogeveen, J., Faures, J. M., Frenken, K., & Feick, S. (2005). Development and validation of the global map of irrigation areas. Hydrology and Earth System Sciences, 9, 535–547.CrossRefGoogle Scholar
  50. Sheffield, J., Andreadis, K. M., Wood, E. F., & Lettenmaier, D. P. (2009). Global and continental drought in the second half of the Twentieth Century: severity-area-duration analysis and temporal variability of large-scale events. Journal of Climate, 22, 1962–1981.CrossRefGoogle Scholar
  51. Simelton, E., Fraser, E. D. G., Termansen, M., Forster, P. M., & Dougill, A. J. (2009). Typologies of crop-drought vulnerability: an empirical analysis of the socio-economic factors that influence the sensitivity and resilience to drought of three major food crops in China (1961–2001). Environmental Science and Policy, 12(4), 438–452.CrossRefGoogle Scholar
  52. Simelton, E. (2011). Food self-sufficiency and natural hazards in China. Food Security, 3(1), 35–52.CrossRefGoogle Scholar
  53. Stringer, L. C., Dyer, J. C., Reed, M. S., Dougill, A. J., Twyman, C., & Mkwanbisi, D. (2009). Adaptations to climate change, drought and desertification: local insights to enhance policy in southern Africa. Enironmental Science and Policy, 12, 748–765.CrossRefGoogle Scholar
  54. The Economist (2009). The Economist Intelligence Unit’s Index of Democracy 2008. http://graphics.eiu.com/PDF/Democracy%20Index%202008.pdf.
  55. Thenkabail, P. S., et al. (2008). A Global Irrigated Area Map (GIAM) Using remote sensing at the end of the last millennium. Colombi. Sri Lanka: International Water Management Institute. 63 pp. http://www.iwmigiam.org/info/gmi-doc/GIAM-world-book.pdf.
  56. The World Bank Group (2008). World Development Indicators Online database. http://data.worldbank.org/indicator
  57. Thorne, R. (2011). Uncertainty in the impacts of projected climate change on the hydrology of a subarctic environment: Liard River Basin. Hydrological and Earth System Sciences, 15, 1483–1492.CrossRefGoogle Scholar
  58. Government, U. K. (2011). Global food and farming futures. London: Foresight Government of the United Kingdom.Google Scholar
  59. USDA (2004). Ukraine: Average harvest prospects for winter grains, production estimates and crop assessment division, foreign agricultural service. United States Department of Agriculture.Google Scholar
  60. Verchot, L. V., et al. (2007). Climate change: linking adaptation and mitigation through agroforestry. Mitigation and Adaptation Strategies for Global Change. doi: 10.1007/s11027-007-9105-6.
  61. Wagner, W., Scipal, K., Pathe, C., Gerten, D., Lucht, W., Rudolf, B. (2003). Evaluation of the agreement between first global remotely sensed soil moisture data with model and precipitation data, Journal of Geophysical Research, 108(D19), 4611, doi: 10.1029/2003JD003663.
  62. World Bank (2009). Country classification 2008. http://go.worldbank.org/K2CKM78CC0.
  63. Xu, H., Taylor, R. G., Kingston, D. G., Jiang, T., Thompson, J. R., & Todd, M. C. (2010). Hydrological modeling of River Xiangxi using SWAT2005: a comparison of model parameterizations using station and gridded meteorological observations. Quaternary International, 226, 54–59.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. & International Society for Plant Pathology 2012

Authors and Affiliations

  • Elisabeth Simelton
    • 1
    • 2
  • Evan D. G. Fraser
    • 1
    • 3
  • Mette Termansen
    • 1
    • 4
  • Tim G. Benton
    • 5
  • Simon N. Gosling
    • 6
  • Andrew South
    • 7
  • Nigel W. Arnell
    • 8
  • Andrew J. Challinor
    • 9
  • Andrew J. Dougill
    • 1
  • Piers M. Forster
    • 9
  1. 1.School of Earth and EnvironmentUniversity of LeedsLeedsUK
  2. 2.World Agroforestry Centre (ICRAF)Ha NoiViet Nam
  3. 3.Department of Geography, College of Human and Applied Social SciencesUniversity of GuelphGuelphCanada
  4. 4.Department of Environmental ScienceUniversity of AarhusRoskildeDenmark
  5. 5.Faculty of Biological SciencesUniversity of LeedsLeedsUK
  6. 6.School of GeographyUniversity of NottinghamNottinghamUK
  7. 7.Centre for EnvironmentFisheries & Aquaculture ScienceDorsetUK
  8. 8.Walker Institute, Department of MeteorologyUniversity of ReadingReadingUK
  9. 9.Institute for Climate and Atmospheric Science, School of Earth and EnvironmentUniversity of LeedsLeedsUK

Personalised recommendations