Food Security

, 3:141 | Cite as

Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security

  • Adrian Clive NewtonEmail author
  • Andrew J. Flavell
  • Timothy S. George
  • Philip Leat
  • Barry Mullholland
  • Luke Ramsay
  • Cesar Revoredo-Giha
  • Joanne Russell
  • Brian J. Steffenson
  • J. Stuart Swanston
  • William T. B. Thomas
  • Robbie Waugh
  • Philip J. White
  • Ian J. Bingham
Original Paper


Barley is cultivated both in highly productive agricultural systems and also in marginal and subsistence environments. Its distribution is worldwide and is of considerable economic importance for animal feed and alcohol production. The overall importance of barley as a human food is minor but there is much potential for new uses exploiting the health benefits of whole grain and beta-glucans. The barley supply chains are complex and show added value at many stages. Germplasm resources for barley are considerable, with much potential for exploitation of its biodiversity available through the use of recently developed genomic and breeding tools. Consequently, substantial gains in crucial sustainability characteristics should be achievable in the future, together with increased understanding of the physiological basis of many agronomic traits, particularly water and nutrient use efficiency. Barley’s ability to adapt to multiple biotic and abiotic stresses will be crucial to its future exploitation and increased emphasis on these traits in elite germplasm is needed to equip the crop for environmental change. Similarly, resource use efficiency should become a higher priority to ensure the crop’s sustainability in the long-term. Clearly barley is a resilient crop with much potential which can be realised in the future.


Barley Hordeum vulgare Quality Yield Supply chain Sustainability Resilience Biotic stress Abiotic stress Food security Physiology Agronomy Cultivation Nutrient use efficiency Water use efficiency Germplasm Biodiversity Genomics 



We thank the Scottish Government Rural Payments and Incentives Directorate for funding from the Sustainable Agriculture - Plants programme, Steven Thomson (SAC) for the production of maps, and Brian Steffenson acknowledges the support of the Scottish Society of Crop Research.


  1. Abeledo, L. G., Calderini, D. F., & Slafer, G. A. (2004). Leaf appearance, tillering and their coordination in old and modern barleys from Argentina. Field Crops Research, 86, 23–32.Google Scholar
  2. Akar, T., Avci, M., & Dusunceli, F. (1999). Barley: Post-harvest operations, chapter 31. In Post-harvest Operations Compendium Post-Harvest Management Group, AGSI-FAO-Rome, October.Google Scholar
  3. Akar, T., Francia, E., Tondelli, A., Rizza, F., Stanca, A. M., & Pecchioni, N. (2009). Marker-assisted characterization of frost tolerance in barley (Hordeum vulgare L.). Plant Breeding, 128, 381–386.Google Scholar
  4. Albisu, L. M., Henchion, M., Leat, P., & Blandford, D. (2010). Improving agri-food chain relationships in Europe: The role of public policy. In C. Fischer & M. Hartmann (Eds.), Agri-food chain relationships (pp. 250–266). Oxford: CAB International.Google Scholar
  5. Allaby, R. G., & Brown, T. A. (2003). AFLP data and the origins of domesticated crops. Genome, 46, 448–453.PubMedGoogle Scholar
  6. Allison, M. J. (1986). Relationships between milling energy and hot water extract values for malts from some modern barleys and their parental cultivars. Journal of the Institute of Brewing, 92, 604–607.Google Scholar
  7. Allison, M. J., Cowe, I. A., Borzucki, R., Bruce, F. M., & McHale, R. (1979). Milling energy of barley. Journal of the Institute of Brewing, 85, 262–265.Google Scholar
  8. Amri, A., Ouammou, L., & Nassif, F. (2005). Barley-based food in Southern Morocco. In S. Grando & H. Gomez Macpherson (Eds.), Food barley: Importance, uses and local knowledge (pp. 22–28). Syria: ICARDA.Google Scholar
  9. Andersson, A. A. M., Armo, E., Grangeon, E., Fredriksson, H., Andersson, R., & Aman, P. (2004). Molecular weight and structure of (1/3) (1/4)-b-D-glucans in dough and bread made from hull-less barley milling fractions. Journal of Cereal Science, 40, 195–204.Google Scholar
  10. Andersson, A. A. M., Lampi, A.-M., Nystrom, L., Piironen, V., Li, L., Ward, J. L., et al. (2008). Phytochemical and dietary fibre components in barley varieties in the HEALTHGRAIN diversity Screen. Journal of Agricultural and Food Chemistry, 56, 9767–9776.PubMedGoogle Scholar
  11. Angus, J. F., Jones, R., & Wilson, J. H. (1972). A comparison of barley cultivars with different leaf inclinations. Australian Journal of Agricultural Research, 23, 945–957.Google Scholar
  12. Anjos, J. R. N., & Charchar, M. J. A. (2000). Natural infection of barley by Pyricularia grisea in Brazil. Fitopatologia Brasileira, 25, 205.Google Scholar
  13. Anyia, A. O., Slaski, J. J., Nyachiro, J. M., Archambault, D. J., & Juskiw, P. (2007). Relationship of carbon isotope discrimination to water use efficiency and productivity of barley under field and greenhouse conditions. Journal of Agronomy and Crop Science, 193, 313–323.Google Scholar
  14. Araus, J. L., Slafer, G. A., Reynolds, M. P., & Royo, C. (2002). Plant breeding and drought in C3 cereals: what should we breed for? Annals of Botany, 89, 925–940.PubMedGoogle Scholar
  15. Arisnabarreta, S., & Miralles, D. J. (2008). Critical period for grain number establishment of near isogenic lines of two and six-rowed barley. Field Crops Research, 107, 196–202.Google Scholar
  16. Arisnabarreta, S., & Miralles, D. J. (2010). Nitrogen and radiation effects during the active spike-growth phase on floret development and biomass partitioning in 2- and 6-rowed barley isolines. Crop & Pasture Science, 61, 578–587.Google Scholar
  17. Badr, A., Müller, K. J., Schäfer-Pregl, R., El Rabey, H., Evgen, S., Ibrahim, H. H., et al. (2000). On the origin and domestication history of barley (Hordeum vulgare). Molecular Biology and Evolution, 17, 499–510.PubMedGoogle Scholar
  18. Bamforth, C. W., & Barclay, A. H. P. (1993). Malting technology and the uses of malt. In A. W. MacGregor & R. S. Bhatty (Eds.), Barley: Chemistry and technology (pp. 297–354). St Paul: Am Assoc of Cereal Chem.Google Scholar
  19. Barker, S. J. (1998). The temporary breakdown of mlo-resistance in barley to powdery mildew. D.Phil Thesis. UK: University of Oxford.Google Scholar
  20. Bartlett, J. G., Alves, S. C., Smedley, M., Snape, J. W., & Harwood, W. A. (2008). High-throughput Agrobacterium-mediated barley transformation. Plant Methods, 4, 22.PubMedGoogle Scholar
  21. Bingham, I. J., & Newton, A. C. (2009). Crop tolerance of foliar pathogens: possible mechanisms and potential for exploitation. In D. Walters (Ed.), Disease control in crops: Biological and environmentally friendly approaches (pp. 142–161). Wiley-Blackwell.Google Scholar
  22. Bingham, I. J., & Topp, C. F. E. (2009). Potential contribution of selected canopy traits to the tolerance of foliar disease by spring barley. Plant Pathology, 58, 1010–1020.Google Scholar
  23. Bingham, I. J., Blake, J., Foulkes, M. J., & Spink, J. (2007). Is barley yield in the UK sink limited? I. Post-anthesis radiation interception, radiation-use efficiency and source-sink balance. Field Crops Research, 101, 198–211.Google Scholar
  24. Bingham, I. J., Walters, D. R., Foulkes, M. J., & Paveley, N. D. (2009). Crop traits and the tolerance of wheat and barley to foliar disease. The Annals of Applied Biology, 154, 159–173.Google Scholar
  25. Bingham, I. J., Karley, A. J., White, P. J., & Thomas, W. T. B. (2010). Analysis of improvements in nitrogen use efficiency associated with 75 years of barley breeding (pp. 51–52) Agro 2010. Proceedings of the XI European Society for Agronomy Congress, Montpellier, France, 29 Aug-3 Sept 2010.Google Scholar
  26. Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research, 112, 119–123.Google Scholar
  27. Borràs, G., Romagosa, I., van Eeuwijk, F., & Slafer, G. (2009). Genetic variability in duration of pre-heading phases and relationships with leaf appearance and tillering dynamics in a barley population. Field Crops Research, 113, 95–104.Google Scholar
  28. Bort, J., Araus, J. L., Hazzam, H., Grando, S., & Ceccarelli, S. (1998). Relationshps between early vigour, grain yield, leaf structure and stable isotope composition in field grown barley. Plant Physiology & Biochemistry, 36, 889–897.Google Scholar
  29. Bowman, J. G. P., Blake, T. K., Surber, L. M. M., Habernicht, T. K., & Daniels, J. T. (1996). Genetic factors controlling digestibility of barley for ruminants. Proceedings of the Western Section, American Society of Animal Science, 47, 257–260.Google Scholar
  30. Bragard, C., Singer, E., Alizadeh, A., Vauterin, L., Maraite, H., & Swings, J. (1997). Xanthomonas translucens from small grains: diversity and phytopathological relevance. Phytopathology, 87, 1111–1117.PubMedGoogle Scholar
  31. Braks, P., & Leijh, T. (2005). The global malt industry: A changing industry structure, driven by emerging beer markets, Rabobank.…/malt%20complex%20intro_2005_tcm25-11570.pdf.
  32. Broadley, M. R., Willey, N. J., Wilkins, J. C., Baker, A. J. M., Mead, A., & White, P. J. (2001). Phylogenetic variation in heavy metal accumulation in angiosperms. The New Phytologist, 152, 9–27.Google Scholar
  33. Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. The New Phytologist, 173, 677–702.PubMedGoogle Scholar
  34. Browder, L. E., & Eversmeyer, M. G. (1986). Interactions of temperature and time with some Puccinia recondita: Triticum corresponding gene pairs. Phytopathology, 76, 1286–1288.Google Scholar
  35. Brueggeman, R., Rostocks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., et al. (2002). The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proceedings of the National Academy of Sciences of the United States of America, 99, 9328–9333.PubMedGoogle Scholar
  36. Burton, R. A., Wilson, S. M., Hrmova, M., Harvey, A. J., Shirley, N. J., Medhurst, A., et al. (2009). Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-ß-D-glucans. Science, 31, 1940–1942.Google Scholar
  37. Capettini, F. (2005). Barley in Latin America. In S. Grando & H. Gomez Macpherson (Eds.), Food barley: Importance, uses and local knowledge (pp. 121–126). Syria: ICARDA.Google Scholar
  38. Cattivelli, L., Baldi, P., Crosatti, C., Di Fonzo, N., Faccioli, P., Grossi, M., et al. (2002). Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Molecular Biology, 48, 649–665.Google Scholar
  39. Cavallero, A., Viva, M., & Stanca, A. M. (2000). Improvement of spaghetti and bread with β-glucan and tocols from naked barley flour. In Proceedings of the Eighth International Barley Genetics Symposium, Adelaide (vol 2, pp. 282–285). Australia: University of Adelaide.Google Scholar
  40. Ceccarelli, S., Grando, S., & van Leur, J. A. G. (1987). Genetic diversity in barley landraces from Syria and Jordan. Euphytica, 36, 389–405.Google Scholar
  41. Ceccarelli, S., Grando, S., & van Leur, I. A. G. (1995). Barley landraces offer new breeding options for stress environments. Diversity, 11, 112–113.Google Scholar
  42. Ceccarelli, S., Grando, S., Maatougui, M., Michael, M., Slash, M., Haghparast, R., et al. (2010). Plant Breeding and climate change. Journal of Agricultural Science, 148, 627–637.Google Scholar
  43. Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security, an overview. Plant Pathology, 60, 2–14.Google Scholar
  44. Chakraborty, S., Luck, J., Hollaway, G., Fitzgerald, G., & White, N. (2011). Rust-proofing wheat for a changing climate. Euphytica. doi: 10.1007/s10681-010-0324-7.Google Scholar
  45. Chalmers, J., Jefferies, J. P., & Langridge, P. (2001). Comparison of RFLP and AFLP marker systems for assessing genetic diversity in Australian barley varieties and breeding lines. Plant genotyping: the DNA fingerprinting of plants (pp. 161–178).Google Scholar
  46. Chen, F., Dong, J., Wang, F., Wu, F., Zhang, G., Li, G., et al. (2007). Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere, 67, 2082–2088.PubMedGoogle Scholar
  47. Chen, F., Wang, F., Zhang, G., & Wu, F. (2008). Identification of barley varieties tolerant to cadmium toxicity. Biological Trace Element Research, 121, 171–179.PubMedGoogle Scholar
  48. Chen, G., Pourkheirandish, M., Sameri, M., Wang, N., Nair, S., Shi, Y., et al. (2009). Genetic targeting of candidate genes for drought sensitive gene eibi1 of wild barley (Hordeum spontaneum). Breeding Science, 59, 637–644.Google Scholar
  49. Cheplick, G. P., & Faeth, S. (2009). Ecology and evolution of the grass-endophyte symbiosis. Oxford Scolarship Online. doi:10.1093/acprof:oso/9780195308082.003.0004.
  50. Chesson, A. (1987). Supplementary enzymes to improve the utilisation of pig and poultry diets. In W. Haresign & D. J. A. Cole (Eds.), Recent advances in animal nutrition (pp. 71–89). London: Butterworths.Google Scholar
  51. Chesson, A. (1991). Effects of supplementary enzymes in barley diets. In J.-L. Molina-Cano & J. Brufau (Eds.), New trends in barley quality for malting and feeding. Options mediterraneennes, serie A, 20 (pp. 55–62). Zaragoza: CIHEAM.Google Scholar
  52. Chin, K. M., & Wolfe, M. S. (1984). Selection on Erysiphe graminis in pure and mixed stands of barley. Plant Pathology, 33, 535–545.Google Scholar
  53. Christiansen, M. N., & Lewis, C. F. (1982). Breeding plants for less favorable environments. New York: Wiley.Google Scholar
  54. Close, T. J., Bhat, P. R., Lonardi, S., Wu, Y., Rostoks, N., Ramsay, L., et al. (2009). Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics, 10, 582.PubMedGoogle Scholar
  55. Cockram, J., White, J., Zuluaga, D., Comadran, J., Macaulay, M., Liu, Z., et al. (2010). Genome-wide association mapping of morphological traits to candidate gene resolution in the un-sequenced barley genome. Proceedings of the National Academy of Sciences of the United States of America, 107, 21611–21616.PubMedGoogle Scholar
  56. Collard, B. C. Y., & Mackill, D. J. (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society of London. B, 363, 557–572.Google Scholar
  57. Collins, H. M., Swanston, J. S., Rossnagel, B. G., & Logue, S. J. (2004). An investigation of the relative rates of protein and carbohydrate modification of a number of international malting varieties, grown in three countries. In Proceedings of the Ninth International Barley Genetics Symposium, Brno, Poster Presentations (pp. 404–409), on CD-ROM.Google Scholar
  58. Comadran, J., Russell, J. R., van Eeuwijk, F. A., Ceccarelli, S., Grando, S., Baum, M., et al. (2007). Mapping adaptation of barley to droughted environments. Euphytica, 161, 35–45.Google Scholar
  59. Comadran, J., Ramsay, L., MacKenzie, K., Hayes, P., Close, T. J., Muehlbauer, G., et al. (2010). Patterns of polymorphism and linkage disequilibrium in cultivated barley. Theoretical and Applied Genetics, 122, 523–531.PubMedGoogle Scholar
  60. Condon, A. G., Richards, R. A., Farqhuar, G. D., & Rebetzke, G. J. (2002). Improving intrinsic water-use efficiency and crop yield. Crop Science, 42, 122–131.PubMedGoogle Scholar
  61. Cossani, C. M., Savin, R., & Slafer, G. A. (2007). Contrasting performance of barley and wheat in a wide range of conditions in Mediterranean Catalonia (Spain). The Annals of Applied Biology, 151, 167–173.Google Scholar
  62. Cossani, C. M., Slafer, G. A., & Savin, R. (2009). Yield and biomass in wheat and barley under a range of conditions in a Mediterranean site. Field Crops Research, 112, 205–213.Google Scholar
  63. Davis, K., Evans, A., & Oxley, S. (2007). Impact of climate change in Scotland on crop pests, weeds and diseases. Technical Note TN605, SAC, Edinburgh.Google Scholar
  64. Delhaize, E., Ryan, P. R., Hebb, D. M., Yamamoto, Y., Sasaki, T., & Matsumoto, H. (2004). Engineering high-level aluminium tolerance in barley with the ALMT1 gene. Proceedings of the National Academy of Sciences of the United States of America, 101, 15249–15254.PubMedGoogle Scholar
  65. Delhaize, E., Gruber, B. D., & Ryan, P. R. (2007). The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Letters, 581, 2255–2262.PubMedGoogle Scholar
  66. Devienne-Barret, F., Justes, E., Machet, J. M., & Mary, B. (2000). Integrated control of nitrate uptake by crop growth rate and soil nitrate availability under field conditions. Annals of Botany, 86, 995–1005.Google Scholar
  67. Diab, A. A., Teulat-Merah, B., This, D., Ozturk, N. Z., Benscher, D., & Sorrells, M. E. (2004). Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theoretical and Applied Genetics, 109, 1417–1425.PubMedGoogle Scholar
  68. Diaz-Perales, A., Linacero, R., & Vazquez, A. M. (2003). Analysis of genetic relationships among 22 European barley varieties based on two PCR markers. Euphytica, 129, 53–60.Google Scholar
  69. Distelfeld, A., Li, C., & Dubcovsky, J. (2009). Regulation of flowering in temperate cereals. Current Opinion in Plant Biology, 12, 178–184.PubMedGoogle Scholar
  70. Doll, H. (1981). Genetic possibilities for improving the nutritional quality of barley protein. In Proceedings of the Fourth International Barley Genetics Symposium, Edinburgh (pp. 257–262). Edinburgh: Edinburgh University Press.Google Scholar
  71. Doll H, Koie B (1978) Influence of the high-lysine gene from barley mutant 1508 on grain, carbohydrate and protein yield. In: Seed Protein Improvement by Nuclear Techniques, pp 107–114, IAEA, ViennaGoogle Scholar
  72. Drinks International (2009). Millionaires (2009) [Online]. Available at:
  73. Duffus, J. H. (2002). “Heavy metals” – a meaningless term? Pure and Applied Chemistry, 74, 793–807.Google Scholar
  74. Dunbabin, V., Diggle, A., & Rengel, Z. (2003). Is there an optimal root architecture for nitrate capture in leaching environments? Plant, Cell & Environment, 26, 835–844.Google Scholar
  75. Dyck, P. L., & Johnson, R. (1983). Temperature sensitivity of genes for resistance in wheat to Puccinia recondita. Canadian Journal of Plant Pathology, 5, 229–234.Google Scholar
  76. Edney, M. J. (1996). Barley. In R. J. Henry & P. S. Kettlewell (Eds.), Cereal grain quality (pp. 113–151). London: Chapman and Hall.Google Scholar
  77. Ellis, R. P., Forster, B. P., Robinson, D., Handley, L. L., Gordon, D. C., Russell, J. R., et al. (2000). Wild barley: a source of genes for crop improvement in the 21st century? Journal of Experimental Botany, 51, 9–17.PubMedGoogle Scholar
  78. Emebiri, L. C., Michael, P., & Moody, D. B. (2009). Enhanced tolerance to boron toxicity in two-rowed barley by marker-assisted introgression of favourable alleles derived from Sahara 3771. Plant and Soil, 314, 77–85.Google Scholar
  79. Euromalt (2008). Euromalt: Committee of the Malting Industry of the European Union.
  80. Euronext (2010). Commodity derivatives: Malting Barley futures and options summary. NYSE Liffe. Available online at:
  81. Fageria, N. K. (2009). The use of nutrients in crop plants. Boca Raton: CRC.Google Scholar
  82. Fageria, N. K., Baligar, V. C., & Jones, C. A. (2011). Growth and mineral nutrition of field crops (3rd ed.). Boca Raton: CRC.Google Scholar
  83. FAO (2010). Food and Agriculture Organization of the United Nations, Land Resources. [last accessed 26th July 2010].
  84. Fischbeck, G. (2002). Contribution of barley to agriculture: a brief overview. In G. A. Slafer, J.-L. Molina-Cano, R. Savin, J.-L. Araus, & I. Romagosa (Eds.), Barley science: Recent advances from molecular biology to agronomy of yield and quality (pp. 1–14). Binghamton: Food Products.Google Scholar
  85. Fleury, D., Jefferies, S., Kuchel, H., & Langridge, P. (2010). Genetic and genomic tools to improve drought tolerance in wheat. Journal of Experimental Botany, 61, 3211–3222.PubMedGoogle Scholar
  86. Forster, B. P., Ellis, R. P., Thomas, W. T. B., Newton, A. C., Tuberosa, R., This, D., et al. (2000). The development and application of molecular markers for abiotic stress tolerance in barley. Journal of Experimental Botany, 51, 18–27.Google Scholar
  87. Forster, B. P., Ellis, R. P., Moir, J., Talamè, V., Sanguineti, M. C., Tuberosa, R., et al. (2004). Genotype and phenotype associations with drought tolerance in barley tested in North Africa. The Annals of Applied Biology, 144, 157–168.Google Scholar
  88. Forster, B. P., Thomas, W. T. B., & Chloupek, O. (2005). Genetic controls of barley root systems and their associations with plant performance. Aspects Applied Biology, 73, 199–204.Google Scholar
  89. Francia, E., Rizza, F., Cattivelli, L., Stanca, A. M., Galiba, G., Toth, B., et al. (2004). Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) x ‘Tremois’ (spring) barley map. Theoretical and Applied Genetics, 108, 670–680.PubMedGoogle Scholar
  90. Francia, E., Barabaschi, D., Tondelli, A., Laidó, G., Rizza, F., Stanca, A. M., et al. (2007). Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theoretical and Applied Genetics, 115, 1083–1091.PubMedGoogle Scholar
  91. Fricano, A., Rizza, F., Faccioli, P., Pagani, D., Pavan, P., Stella, A., et al. (2009). Genetic variants of HvCbf14 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare. Theoretical and Applied Genetics, 119, 1335–1348.PubMedGoogle Scholar
  92. Friedt, W., Werner, K., & Ordon, F. (2000). Genetic progress as reflected in highly successful and productive modern barley cultivars. In Proceedings of the Eighth International Barley Genetics Symposium, Adelaide (vol 1, pp. 271–279). Australia: University of Adelaide.Google Scholar
  93. Gahoonia, T. S., & Nielsen, N. E. (1997). Variation in root hairs of barley cultivars doubled soil phosphorus uptake. Euphytica, 98, 177–182.Google Scholar
  94. Gahoonia, T. S., & Nielsen, N. E. (2003). Phosphorus (P) uptake and growth of a root hairless barley mutant (bald root barley, brb) and wild type in low- and high-P soils. Plant, Cell & Environment, 26, 1759–1766.Google Scholar
  95. Gahoonia, T. S., & Nielsen, N. E. (2004). Barley genotypes with long root hairs sustain high grain yields in low-P field. Plant Soil, 262, 55–62.Google Scholar
  96. Galiba, G., Vágújfalvi, A., Li, C., Soltész, A., & Dubcovsky, J. (2009). Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Science, 176, 12–19.Google Scholar
  97. Garthwaite, A. J., von Bothmer, R., & Colmer, T. D. (2005). Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots. Journal of Experimental Botany, 56, 2365–2378.PubMedGoogle Scholar
  98. George, T. S., Brown, L. K., Newton, A. C., Hallett, P. D., Sun, B. H., Thomas, W. T. B., et al. (2010). Impact of soil tillage on the robustness of the genetic component of variation in phosphorus (P) use efficiency in barley (Hordeum vulgare L.). Plant Soil, 339, 113–123.Google Scholar
  99. Global strategy for the ex situ conservation and use of barley germplasm (2008). Global crop diversity trust. Available online:
  100. Gohl, B., Alden, S., Elwinger, K., & Thomke, S. (1978). Influence of β-glucanase on feeding value of barley for poultry and moisture content of excreta. British Poultry Science, 19, 41–47.Google Scholar
  101. Gong, X., Wescott, S., Li, C. D., Yan, G. J., Lance, R., & Sun, D. F. (2009). Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Molecular Ecology, 18, 1523–1536.Google Scholar
  102. Graham, R., Davies, W., Sparrow, D., & Ascher, J. (1983). Tolerance of barley and other cereals to manganese-deficient calcareous soils of South Australia. In B. C. Loughman (Ed.), Genetic aspects of plant nutrition (pp. 339–344). The Hague: Martinus Nijhoff.Google Scholar
  103. Grando, S., & Gomez Macpherson, H. (2005). Preface. In S. Grando & H. Gomez Macpherson (Eds.), Food barley: Importance, uses and local knowledge (pp. ix–x). Syria: ICARDA.Google Scholar
  104. Graner, A., Ludwig, W. F., & Melchinger, A. E. (1994). Relationships among European barley germplasm. 2. Comparison of RFLP and pedigree data. Crop Science, 34, 1199–1205.Google Scholar
  105. Gregory, P. J., Johnson, S. N., Newton, A. C., & Ingram, J. S. I. (2009). Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60, 2827–2838.PubMedGoogle Scholar
  106. Hadado, T., Rau, D., & Bitocchi, E. (2010). Adaptation and diversity along an altitudinal gradient in Ethiopian barley (Hordeum vulgare L.) landraces revealed by molecular analysis. BMC Plant Biology, 10, 121.Google Scholar
  107. Harder, D. E., Rohringer, R., Samborski, D. J., Rimmer, S. R., Kim, W. K., & Chong, J. (1979). Electron-microscopy of susceptible and resistant near-isogenic (sr6-Sr6) lines of wheat infected by Puccinia graminis tritici. II. Expression of incompatibility in mesophyll and epidermal cells and the effect of temperature on host-parasite interactions in these cells. Canadian Journal of Botany, 57, 2617–2625.Google Scholar
  108. Hargreaves, C. E., Gregory, P. J., & Bengough, A. G. (2009). Measuring root traits in barley (Hordeum vulgare ssp vulgare and ssp spontaneum) seedlings using gel chambers, soil sacs and X-ray microtomography. Plant Soil, 316, 285–297.Google Scholar
  109. Harrington, R., Bale, J. S., & Tatchell, G. M. (1995). Aphids in a changing climate. In R. Harrington & N. E. Stork (Eds.), Insects in a changing environment (pp. 126–155). London: Academic.Google Scholar
  110. Harrington, R., Clark, S. J., Welham, S. J., Verrier, P. J., Denholm, C. H., Hulle, M., et al. (2007). Environmental change and the phenology of European aphids. Global Change Biology, 13, 1550–1564.Google Scholar
  111. Hauser, F., & Horie, T. (2010). A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant, Cell & Environment, 33, 552–565.Google Scholar
  112. He, P., Osaki, M., Takebe, M., Shinano, T., & Wasaki, J. (2005). Endogenous hormones and expression of senescence-related genes in different senescent types of maize. Journal of Experimental Botany, 56, 1117–1128.PubMedGoogle Scholar
  113. Hebbern, C. A., Pedas, P., Schjoerring, J. K., Knudsen, L., & Husted, S. (2005). Genotypic differences in manganese efficiency: field experiments with winter barley (Hordeum vulgare L.). Plant Soil, 272, 233–244.Google Scholar
  114. Heffner, E. L., Sorrells, M. E., & Jannink, J.-L. (2009). Genomic selection for crop improvement. Crop Science, 49, 1–11.Google Scholar
  115. Heiser, I., Sachs, E., & Liebermann, B. (2003). Photodynamic oxygen activation by rubellin D, a phytotoxin produced by Ramularia collo-cygni (Sutton et Waller). Physiological and Molecular Plant Pathology, 62, 29–36.Google Scholar
  116. HGCA (2006). The barley growth guide. Available online:
  117. HGCA (2010). Malting barley - quality criteria and tests. Available online:
  118. Hockett, E. A., & White, L. M. (1981). Simultaneous breeding for feed and malting quality. In Proceedings of the Fourth International Barley Genetics Symposium, Edinburgh (pp. 234–241). Edinburgh: Edinburgh University Press.Google Scholar
  119. Hodge, A. (2004). The plastic plant: root responses to heterogenous supplies of nutrients. The New Phytologist, 162, 9–24.Google Scholar
  120. Hodge, A., Robinson, D., Griffiths, B. S., & Fitter, A. H. (1999). Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant, Cell & Environment, 22, 811–820.Google Scholar
  121. Holgado, R., Andersson, S., & Magnusson, C. (2006). Management of cereal cyst nematodes, Heterodera spp., in Norway. Communications in Agricultural and Applied Biological Sciences, 71, 639–645.PubMedGoogle Scholar
  122. Huang, S., Spielmeyer, W., Lagudah, E. S., & Munns, R. (2008). Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. Journal of Experimental Botany, 59, 927–937.PubMedGoogle Scholar
  123. Huber, L., & Gillespie, T. J. (1992). Modeling leaf wetness in relation to plant disease epidemiology. Annual Review of Phytopathology, 30, 553–577.Google Scholar
  124. Hübner, S., Höffken, M., Oren, E., Haseneyer, G., Stein, N., Graner, A., et al. (2009). Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Molecular Ecology, 18, 1523–1536.PubMedGoogle Scholar
  125. Impact. (2009). Impact magazine exclusive: World’s top 100 spirit brands. New York: M Shanken Communications, Inc.. 1 & 15 February issues.Google Scholar
  126. Ingversen, J., Koie, B., & Doll, H. (1973). Induced seed protein mutant of barley. Experientia, 29, 1151–1152.Google Scholar
  127. Inostroza, L., del Pozo, A., Matus, I., Castillo, D., Hayes, P., Machado, S., et al. (2009). Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Molecular Breeding, 23, 365–376.Google Scholar
  128. Izydorczyk, M., Hussain, A., & MacGregor, A. W. (2001). Effect of barley and barley components on rheological properties of wheat dough. Journal of Cereal Science, 34, 251–260.Google Scholar
  129. Jarman, R. J. (1996). Bere barley – a living link with the 8th century. Plant Varieties & Seeds, 9, 191.Google Scholar
  130. Jarosch, B., Kogel, K.-H., & Schaffrath, U. (1999). The ambivalence of the barley Mlo locus: mutations conferring resistance against powdery mildew (Blumeria graminis f. sp. hordei) enhance susceptibility to the rice blast fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions, 12, 508–514.Google Scholar
  131. Jefferies, S. P., King, B. J., Barr, R., Warner, P., Logue, S. J., & Langridge, P. (2003). Marker-assisted backcross introgression of the Yd2 gene conferring resistance to barley yellow dwarf virus in barley. Plant Breeding, 122, 52–56.Google Scholar
  132. Jin, Y., Steffenson, B. J., & Miller, J. D. (1994). Inheritance of resistance to pathotypes QCC and MCC of Puccinia graminis f. sp. tritici in barley line Q21861 and temperature effects on the expression of resistance. Phytopathology, 84, 452–455.Google Scholar
  133. Jokinen, R., & Tahtinen, H. (1988). Sensitivity to copper deficiency and response to copper fertilization of barley and oat varieties. Annales Agriculturae Fenniae, 27, 45–53.Google Scholar
  134. Juknys, R., Račiatė, M., Vitkauskiatė, G., & Venclovienė, J. (2009). The effect of heavy metals on spring barley (Hordeum vulgare L.). Zemdirbyste – Agriculture, 96, 111–124.Google Scholar
  135. Karaman, M. R., Sahin, S., Kandemir, N., Çoban, S., & Sert, S. (2007). Characterization of some barley cultivars (H. vulgare spp.) for their response to iron deficiency on calcareous soil. Asian Journal of Chemistry, 19, 3007–3014.Google Scholar
  136. Karaman, M. R., Kandemir, N., Sahin, S., & Çoban, S. (2010). Strategies to select genetic variations of barley (Hordeum vulgare L.) cultivars for agronomic zinc utilization characters. Journal of Food, Agriculture and Environment, 8, 395–399.Google Scholar
  137. Kijne, J. W., Barker, R., & Molden, D. J. (Eds.). (2003). Water productivity in agriculture: Limits and opportunities for improvement (p. 332). UK: CABI.Google Scholar
  138. King, J., Gay, A., Sylvester-Bradley, R., Bingham, I., Foulkes, J., Gregory, P., & Robinson, D. (2003). Modelling cereal root systems for water and nitrogen capture: Towards an economic optimum. Annals of Botany, 91, 383–390.PubMedGoogle Scholar
  139. Kislev, M. E., Nadel, D., & Carmi, I. (1992). Grain and fruit diet 19.000 years old at Ohalo II, Sea of Galilee, Israel. Review of Palaeobotany and Palynology, 73, 161–166.Google Scholar
  140. Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., et al. (2007). Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proceedings of the National Academy of Sciences of the United States of America, 104, 1424–1429.PubMedGoogle Scholar
  141. Kongprakhon, P., Alfonso Cuesta-Marcos, A., Hayes, P. M., Richardson, K. L., Sirithunya, P., Sato, K., et al. (2009). Validation of rice blast resistance genes in barley using a QTL mapping population and near-isolines. Breeding Science, 59, 341–349.Google Scholar
  142. Kosová, K., Prášil, I. T., & Vítámvás, P. (2010). Role of dehydrins in plant stress response. In M. Pessarakli (Ed.), Handbook of plant and crop stress (3rd ed., pp. 239–285). Boca Raton: CRC, Taylor & Francis.Google Scholar
  143. Kurppa, S. (1989). Susceptibility and reaction of wheat and barley varieties grown in Finland to damage by the orange wheat blossom midge Sitodiplosis mosellana (Gehin). Annales Agriculturae Fenniae, 28, 371–383.Google Scholar
  144. Ladha, J. K., Pathak, H., Krupnik, T. J., Six, J., & van Kessel, C. (2005). Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Advances in Agronomy, 87, 85–156.Google Scholar
  145. Lee, P. A., & Kay, R. M. (2003). The effect of commercially formulated, reduced crude protein diets, formulated to 11 apparent ileal-digestible essential amino acids, on nitrogen retention by growing and finishing boars. Livestock Poduction Science, 81, 89–98.Google Scholar
  146. Lein, A. (1964). Breeding for malting quality. In Proceedings of the First International Barley Genetics Symposium, Wageningen (pp. 310–324). The Netherlands: Centre for Agricultural Publications and Documentation.Google Scholar
  147. Lewis, J. (2001). Managing CCN with high value cereals. Australia: South Australia Research and Development Institute Research Services.Google Scholar
  148. Liao, H., Yan, X., Rubio, G., Beebe, S. E., Blair, M. W., & Lynch, J. P. (2004). Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Functional Plant Biology, 31, 959–970.Google Scholar
  149. Liao, M., Fillery, I. R. P., & Palta, J. A. (2004). Early vigorous growth is a major factor influencing nitrogen uptake in wheat. Functional Plant Biology, 31, 121–129.Google Scholar
  150. Lima, M. I. P. M., & Minella, E. (2003). Occurrence of head blast in barley. Fitopatologia Brasileira, 28, 207.Google Scholar
  151. Lima, M. I. P. M., Minella, E., & Vilasboas, F. S. (2007). Occurrence of rice blast in barley leaves in Rio Grande do Sul, Brazil. Fitopatologia Brasileira, 32, 167.Google Scholar
  152. Lombnæs, P., & Singh, B. R. (2003). Varietal tolerance to zinc deficiency in wheat and barley grown in chelator-buffered nutrient solution and its effect on uptake of Cu, Fe and Mn. Journal of Plant Nutrition and Soil Science, 166, 76–83.Google Scholar
  153. Lonergan, P. F., Pallotta, M. A., Lorimer, M., Paull, J. G., Barker, S. J., & Graham, R. D. (2009). Multiple genetic loci for zinc uptake and distribution in barley (Hordeum vulgare). The New Phytologist, 184, 168–179.PubMedGoogle Scholar
  154. Lundqvist, U., Frankowiak, J. D., & Konishi, T. (1997). Special issue. Barley genetic newsletter 26 (
  155. Ma, J. F., Ryan, P. R., & Delhaize, E. (2001). Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science, 6, 273–278.PubMedGoogle Scholar
  156. Ma, J. F., Nagao, S., Sato, K., Ito, H., Furukawa, J., & Takeda, K. (2004). Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. Journal of Experimental Botany, 55, 1335–1341.PubMedGoogle Scholar
  157. MacLeod, A. M. (1977). The impact of science on malting technology. In Proceedings of the 16th European Brewery Convention Congress, Amsterdam (pp. 63–75). Oxford: Oxford University Press.Google Scholar
  158. Maestri, E., Malcevschi, A., Massari, A., & Marmiroli, N. (2002). Genomic analysis of cultivated barley (Hordeum vulgare) using sequence-tagged molecular markers. Estimates of divergence based on RFLP and PCR markers derived from stress-responsive genes, and simple-sequence repeats (SSRs). Molecular Genetics and Genomics, 267, 186–201.PubMedGoogle Scholar
  159. Maga, J. A. (1982). Phytate: its chemistry occurrence, food interactions, nutritional significance and methods of analysis. Journal of Agricultural and Food Chemistry, 30, 1–9.Google Scholar
  160. MAGB (2010). Controlling the intake of malting barley to UK malting.
  161. Makepeace, J. C., Havis, N. D., Burke, J. I., Oxley, S. J. P., & Brown, J. K. M. (2008). A method of inoculating barley seedlings with Ramularia collo-cygni. Plant Pathology, 57, 991–999.Google Scholar
  162. Malt Products Corporation (2010). Food and beverage applications.
  163. Martin, P., & Chang, X. (2007). Beer and bere: growing old cereals on northern islands. Brewer and Distiller International, 3, 29.Google Scholar
  164. McDonald, G. K., Eglinton, J. K., & Barr, A. R. (2010). Assessment of the agronomic value of QTL on chromosomes 2H and 4H linked to tolerance to boron toxicity in barley (Hordeum vulgare L.). Plant and Soil, 326, 275–290.Google Scholar
  165. Melchinger, A. E., Graner, A., & Singh, M. (1994). Relationships among European barley germplasm 1. Genetic diversity among winter and spring cultivars revealed by RFLPS. Crop Science, 34, 1191–1199.Google Scholar
  166. Mengel, K., Kirkby, E. A., Kosegarten, H., & Appel, T. (2001). Principles of plant nutrition. Dordrecht: Kluwer.Google Scholar
  167. Meredith, W. O. S., Anderson, J. A., & Hudson, L. E. (1962). Evaluation of malting barley. In A. H. Cook (Ed.), Barley and malt: Biology, biochemistry and technology (pp. 207–270). London and New York: Academic.Google Scholar
  168. Metzker, M. L. (2009). Sequencing technologies - the next generation. Nature Reviews. Genetics, 11, 31–46.PubMedGoogle Scholar
  169. Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157, 1819–1829.PubMedGoogle Scholar
  170. Milus, E. A., Kristensen, K., & Hovmøller, M. S. (2009). Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology, 99, 89–94.PubMedGoogle Scholar
  171. Molina-Cano, J.-L., Francesch, M., Perez-Vendrell, A. M., Ramo, T., Voltas, J., & Brufau, J. (1997). Genetic and environmental variation in malting and feed quality of barley. Journal of Cereal Science, 25, 37–47.Google Scholar
  172. Molina-Cano, J. L., Moralejo, M., Igartua, E., & Romagosa, I. (1999). Further evidence supporting Morocco as a center of origin of barley. Theoretical and Applied Genetics, 98, 913–918.Google Scholar
  173. Monneveux, P., Reynolds, M. P., Trethowan, R., Peña, J., & Zapata, F. (2004). Carbon isotope discrimination, leaf ash content and grain yield in bread and durum wheat grown under full-irrigated conditions. Journal of Agronomy and Crop Science, 190, 389–394.Google Scholar
  174. Montague-Jones, G. (2010). Americans fall out of love with imported beer.
  175. Moose, S. P., & Mumm, R. H. (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiology, 147, 969–977.PubMedGoogle Scholar
  176. Morrell, P. L., & Clegg, M. T. (2007). Evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proceedings of the National Academy of Sciences of the United States of America, 104, 3289–3294.PubMedGoogle Scholar
  177. Munck, L., Karlsson, K. E., Hagberg, A., & Eggum, B. O. (1970). Gene for improved nutritional value in barley seed protein. Science, 168, 985–987.PubMedGoogle Scholar
  178. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.PubMedGoogle Scholar
  179. Nevo, E. (1992). Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the fertile crescent. In P. R. Shewry (Ed.), Barley: Genetics, biochemistry, molecular biology and biotechnology (pp. 19–43). Wallingford: CAB International.Google Scholar
  180. Nevo, E. (1995). Asian, African and American biota meet at ‘Evolution Canyon’ Israel: local tests of global biodiversity and genetic diversity patterns. Proceedings of the Royal Society of London B, 262, 149–155.Google Scholar
  181. Nevo, E. (1997). Evolution in action across phylogeny caused by microclimatic stresses at ‘Evolution Canyon’. Theoretical Population Biology, 52, 231–243.PubMedGoogle Scholar
  182. Nevo, E. (2001). Evolution of genome-phenome diversity under environmental stress. Proceedings of the National Academy of Sciences of the United States of America, 98, 6233–6240.PubMedGoogle Scholar
  183. Nevo, E. (2006). Genome evolution of wild cereal diversity and prospects for crop improvement. Plant Genetic Resources, 4, 36–46.Google Scholar
  184. Nevo, E., & Chen, G. (2010). Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant, Cell & Environment, 33, 670–685.Google Scholar
  185. Nevo, E., Beharav, A., Meyer, R. C., Hackett, C. A., Forster, B. P., Russell, J. R., et al. (2005). Genomic microsatellite adaptive divergence of wild barley by microclimatic stress in ‘Evolution Canyon’, Israel. Biological Journal of the Linnean Society, 84, 205–224.Google Scholar
  186. Newman, C. W., & Newman, R. K. (2006). A brief history of barley foods. Cereal Foods World, 51, 4–7.Google Scholar
  187. Newman, R. K., Newman, C. W., & Graham, H. (1989). The hypocholesterolemic function of barley B-glucan. Cereal Foods World, 34, 883–886.Google Scholar
  188. Newton, A. C., & Guy, D. C. (2009). The effects of uneven, patchy cultivar mixtures on disease control and yield in winter barley. Field Crops Research, 110, 225–228.Google Scholar
  189. Newton, A. C., & Young, I. M. (1996). Temporary partial breakdown of Mlo-resistance in spring barley by the sudden relief of soil water stress. Plant Pathology, 45, 970–974.Google Scholar
  190. Newton, A. C., Swanston, J. S., Guy, D., & Hallett, P. D. (2008). Variety mixtures: on farm mixing and interaction with cultivation methods. Proceedings of the Crop Protection in Northern. Britain Conference, 2008, 115–120.Google Scholar
  191. Newton, A. C., Begg, G., & Swanston, J. S. (2009). Deployment of diversity for enhanced crop function. The Annals of Applied Biology, 154, 309–322.Google Scholar
  192. Newton, A. C., Aker, T., Baresel, J. P., Bebeli, P., Bettencourt, E., Bladenopoulos, K. V., et al. (2010a). Cereal landraces for sustainable agriculture: a review. Agronomy for Sustainable Development, 30, 237–269.Google Scholar
  193. Newton, A. C., Fitt, B. D. L., Daniell, T., Atkins, S. D., & Walters, D. R. (2010b). Pathogenesis, mutualism and parasitism, in the trophic space of microbial-plant interactions. Trends in Microbiology, 18, 365–373.PubMedGoogle Scholar
  194. Newton, A. C., Johnson, S. N., & Gregory, P. J. (2011a). Implications of climate change on diseases, crop yields and food security. Euphytica. doi: 10.1007/s10681-011-0359-4.Google Scholar
  195. Newton, A. C., Gravouil, C., & Fountaine, J. M. (2011b). Managing the ecology of foliar pathogens: ecological tolerance in crops. The Annals of Applied Biology, 157, 343–359.Google Scholar
  196. Nicol, S. (2009). The Scotch Whisky Industry. SPICe Briefing 09/76 Scottish Parliament Information Centre (SPICe): Edinburgh.Google Scholar
  197. Nicol, J. M., Elekçioğlu, I. H., Bolat, N., & Rivoal, R. (2007). The global importance of the cereal cyst nematode (Heterodera spp.) on wheat and international approaches to its control. Communications in Agricultural and Applied Biological Sciences, 72, 677–686.PubMedGoogle Scholar
  198. Oakley, J. N., Cumbleton, P. C., Corbett, S. J., Saunderst, P., Green, D. I., Young, J. E. B., et al. (1998). Prediction of orange wheat blossom midge activity and risk of damage. Crop Protection, 17, 145–149.Google Scholar
  199. Oakley, J. N., Talbot, G., Dyer, C., Self, M. M., Freer, J. B. S., Angus, W. J., et al. (2005). Integrated control of wheat blossom midge: Variety choice, use of pheromone traps and treatment thresholds. Home-Grown Cereal Authority. Project Report No. 363.Google Scholar
  200. Ordon, F., Ahlemeyer, J., Werner, K., Köhler, W., & Friedt, W. (2005). Molecular assessment of genetic diversity in winter barley and its use in breeding. Euphytica, 146, 21–28.Google Scholar
  201. Oxley, S. J. P., Havis, N., & Evans, A. (2010). A guide to the recognition and understanding of Ramularia and other leaf spots of barley. UK: HGCA.Google Scholar
  202. Palmer, G. H. (1995). Structure of ancient cereal grains. Journal of the Institute of Brewing, 101, 103–112.Google Scholar
  203. Palmer, S. (2006). The buzz on beta-glucans. Food product design. May 5, 2006.
  204. Paulitz, T. C., & Steffenson, B. J. (2011). Biotic stress in barley: Disease problems and solutions. In S. E. Ullrich (Ed.), Barley production, improvement, and uses (pp. 307–354). Ames: Wiley-Blackwell.Google Scholar
  205. Peltonen-Sainio, P., Jauhiainen, L., Hakala, K., & Ojanen, H. (2009). Climate change and prolongation of growing season: changes in regional potential for filed crop production in Finland. Agricultural and Food Science, 18, 171.Google Scholar
  206. Persson, D. P., Hansen, T. H., Holm, P. E., Schjoerring, J. K., Hansen, H. C. B., Nielsen, J., et al. (2006). Multi-elemental speciation analysis of barley genotypes differing in tolerance to cadmium toxicity using SEC-ICP-MS and ESI-TOF-MS. Journal of Analytical Atomic Spectrometry, 21, 996–1005.Google Scholar
  207. Petterson, O. (1977). Differences in cadmium uptake between plant species and cultivars. Swedish Journal of Agricultural Research, 7, 21–24.Google Scholar
  208. Pickering, R., Ruge-Wehling, B., Johnston, P. A., Schweizer, G., Ackermann, P., & Wehling, P. (2006). The transfer of a gene conferring resistance to scald (Rhynchosporium secalis) from Hordeum bulbosum into H. vulgare chromosome 4HS. Plant Breeding, 125, 576–579.Google Scholar
  209. Pinheiro, H. A., Damatta, F. M., Chaves, A. R. M., & Lourerio, M. E. (2005). Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Annals of Botany, 96, 101–108.PubMedGoogle Scholar
  210. Plato Logic (2008). World beer report 2008 – production sheet summary extract.
  211. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., et al. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2, 225–238.Google Scholar
  212. Prášil, I. T., Prášilová, P., & Mařík, P. (2007). Comparative study of direct and indirect evaluations of frost tolerance in barley. Field Crops Research, 102, 1–8.Google Scholar
  213. Rae, S. J., Macaulay, M., Ramsay, L., Leigh, F., Matthews, D., O’Sullivan, D. M., et al. (2007). Molecular barley breeding. Euphytica, 158, 295–303.Google Scholar
  214. Rasmussen, S. K., & Hatzack, F. (1998). Identification of two low-phytate barley (Hordeum vulgare L.) grain mutants by TLC and genetic analysis. Hereditas, 129, 107–112.Google Scholar
  215. Reid, R. (2010). Can we really increase yields by making crop plants tolerant to boron toxicity? Plant Science, 178, 9–11.Google Scholar
  216. Revoredo-Giha, C., & Leat, P. (2010). Enhancing the integration of agri-food chains: Challenges for UK malting barley. In C. Fischer & M. Hartmann (Eds.), Agri-food chain relationships (pp. 135–149). Oxford: CAB International.Google Scholar
  217. Reynolds, M., & Tuberosa, R. (2008). Translational research impacting on crop productivity in drought-prone environments. Current Opinion in Plant Biology, 11, 171–179.PubMedGoogle Scholar
  218. Reynolds, M. P., van Ginkel, M., & Ribaut, J. (2000). Avenues for genetic modification of radiation use efficiency in wheat. Journal of Experimental Botany, 51, 459–473.PubMedGoogle Scholar
  219. Reynolds, M. P., Pellegrineseschi, A., & Skovmand, B. (2005). Sink-limitation to yield and biomass: a summary of some investigations in spring wheat. The Annals of Applied Biology, 146, 39–49.Google Scholar
  220. Richards, R. A. (2000). Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany, 51, 447–458.PubMedGoogle Scholar
  221. Richards, R. A. (2006). Physiological traits used in the breeding of new cultivars for water-scarce environments. Agricultural Water Management, 80, 197–211.Google Scholar
  222. Richards, R. A., Rebetzke, G. J., Condon, A. G., & van Herwaarden, A. F. (2002). Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Science, 42, 111–121.PubMedGoogle Scholar
  223. Robinson, D. (1996). Resource capture by localized root proliferation: why do plants bother? Annals of Botany, 77, 179–185.Google Scholar
  224. Robinson, D., Hodge, A., Griffiths, B. S., & Fitter, A. H. (1999). Plant root proliferation in nitrogen-rich patches confers competitive advantage. Proceedings of the Royal Society of London B, 266, 431–435.Google Scholar
  225. Roelfs, A. P., Singh, R., & Saari, E. E. (1992). Rust diseases of wheat: Concepts and methods of disease management. Mexico: CIMMYT.Google Scholar
  226. Rostoks, N., Ramsay, L., Mackenzie, K., Cardle, L., Svensson, J. T., Bhat, P., et al. (2006). Human-induced population structure in inbreeding crop species facilitates whole genome association mapping. Proceedings of the National Academy of Sciences of the United States of America, 103, 18656–18661.PubMedGoogle Scholar
  227. Rouse, M., & Jin, Y. (2009). Aggressiveness of races TTKSK and QFCSC of Puccinia graminis f. sp. tritici at various temperatures. In M. S. Akkaya (Ed.), Abstr 12th Int Cereal Rusts Powdery Mildew Conf
  228. Rudgers, J. A., & Swafford, A. L. (2009). Benefits of a fungal endophyte in Elymus virginicus decline under drought stress. Basic and Applied Ecology, 10, 43–51.Google Scholar
  229. Russell, J. R., Fuller, J. D., Macaulay, M., Hatz, B. G., Jahoor, J., Powell, W., et al. (1997). Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theoretical and Applied Genetics, 95, 714–722.Google Scholar
  230. Russell, J. R., Ellis, R. P., Thomas, W. T. B., Waugh, R., Provan, J., Booth, A., et al. (2000). A retrospective analysis of spring barley germplasm development from ‘foundation genotypes’ to currently successful cultivars. Molecular Breeding, 6, 553–568.Google Scholar
  231. Russell, J. R., Booth, A., Fuller, J., Baum, M., Ceccarelli, S., Grando, S., et al. (2003). Patterns of polymorphism detected in the chloroplast and nuclear genomes of barley landraces sampled from Syria and Jordan. Theoretical and Applied Genetics, 107, 413–442.PubMedGoogle Scholar
  232. Russell, J. R., Dawson, I. K., Flavell, A. J., Steffenson, B., Weltzien, E., Booth, A., et al. (2011). Analysis of more than 1,000 SNPs in geographically-matched samples of landrace and wild barley indicates secondary contact and chromosome-level differences in diversity around domestication genes. New Phytologist. doi: 10.1111/j.1469-8137.2011.03704.x.
  233. Saisho, D., & Purugganan, M. D. (2007). Two origins of barley: molecular phylogeography of domesticated barley traces expansion of agriculture in the Old World. Genetics, 177, 1765–1776.PubMedGoogle Scholar
  234. Salekdeh, G. H., Reynolds, M., Bennett, J., & Boyer, J. (2009). Conceptual framework for drought phenotyping during molecular breeding. Trends in Plant Science, 14, 488–496.PubMedGoogle Scholar
  235. Salse, J., Abrouk, M., Bolot, S., Guilhot, N., Courcelle, E., Faraut, T., et al. (2009). Reconstruction of monocotyledonous proto-chromosomes reveals faster evolution in plants than in animals. Proceedings of the National Academy of Sciences of the United States of America, 106, 14908–14913.PubMedGoogle Scholar
  236. Samarah, N. H., Alqudah, A. M., Amayreh, J. A., & McAndrews, G. M. (2009). The effect of late-terminal drought stress on yield components of four barley cultivars. Journal of Agronomy and Crop Science, 195, 427–441.Google Scholar
  237. Sandberg, A.-S. (1991). The effect of food processing on phytate hydrolysis and availability of iron and zinc. In M. Friedman (Ed.), Nutritional and toxilogical consequences of food processing (pp. 499–508). New York: Plenum.Google Scholar
  238. Schmierer, D. A., Kandemir, N., Kudrna, D. A., Jones, B. L., Ullrich, S. E., & Kleinhofs, A. (2004). Molecular marker-assisted selection for enhanced yield in malting barley. Molecular Breeding, 14, 463–473.Google Scholar
  239. Schulte, D., Close, T. J., Graner, A., Langridge, P., Matsumoto, T., Muehlbauer, G. J., et al. (2009). International Barley Sequencing Consortium - at the threshold of efficient access to the barley genome. Plant Physiology, 149, 142–147.PubMedGoogle Scholar
  240. Schut, J. W., Qi, X., & Stam, P. (1997). Association between relationship measures based on AFLP markers, pedigree data and morphological traits in barley. Theoretical and Applied Genetics, 95, 1161–1168.Google Scholar
  241. Sharma, M., Schmid, M., Rothballer, M., Hause, G., Zuccaro, A., Imani, J., et al. (2008). Detection and identification of bacteria intimately associated with fungi of the order Sebacinales. Cellular Microbiology, 10, 2235–2246.PubMedGoogle Scholar
  242. Singh, R. P., Hodson, D. P., Huerta-Espino, J., Jin, Y., Njau, P., Wanyera, R., et al. (2008). Will stem rust destroy the world’s wheat crop? Advances in Agronomy, 98, 271–309.Google Scholar
  243. Slafer, G. A., Araus, J. L., Royo, C., & Garcia del Moral, L. F. (2005). Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments. The Annals of Applied Biology, 146, 61–70.Google Scholar
  244. Steffenson, B. J. (2003). Fusarium head blight of barley: Impact, epidemics, management, and strategies for identifying and utilizing genetic resistance. In K. J. Leonard & W. R. Bushnell (Eds.), Fusarium head blight of wheat and barley (pp. 241–295). St. Paul: APS. 512 pp.Google Scholar
  245. Steffenson, B. J., Jin, Y., Brueggeman, R. S., Kleinhofs, A., & Sun, Y. (2009). Resistance to stem rust race TTKSK maps to the rpg4/Rpg5 complex of chromosome 5H of barley. Phytopathology, 99, 1135–1141.PubMedGoogle Scholar
  246. Stewart, K. J. (2002). Abiotic stress and mlo-resistance breakdown to barley powdery mildew. D.Phil Thesis. UK: University of Oxford.Google Scholar
  247. Stockinger, E. J., Skinner, J. S., Gardner, K. G., Francia, E., & Pecchioni, N. (2007). Expression levels of barley Cbf genes at the Frost-resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. The Plant Journal, 51, 308–321.PubMedGoogle Scholar
  248. Struss, D., & Plieske, J. (1998). The use of microsatellite markers for detection of genetic diversity in barley populations. Theoretical and Applied Genetics, 97, 308–315.Google Scholar
  249. Suprunova, T., Krugman, T., Fahima, T., Chen, G., Shams, I., Korol, A., et al. (2004). Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant, Cell & Environment, 27, 1297–1308.Google Scholar
  250. Suprunova, T., Krugman, T., Distelfeld, A., Fahima, T., Nevo, E., & Korol, A. (2007). Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Plant Molecular Biology, 64, 17–34.PubMedGoogle Scholar
  251. Sutton, J. C. (1982). Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Canadian Journal of Plant Pathology, 4, 195–209.Google Scholar
  252. Sutton, T., Baumann, U., Hayes, J., Collins, N. C., Shi, B.-J., Schnurbusch, T., et al. (2007). Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science, 318, 1446–1449.PubMedGoogle Scholar
  253. Swanston, J. S., Newton, A. C., Hoad, S., & Spoor, W. (2006). Variation across environments in patterns of water uptake and endosperm modification in barley varieties and variety mixtures. Journal of the Science of Food and Agriculture, 86, 826–833.Google Scholar
  254. Talamè, V., Sanguineti, M. C., Chiapparino, E., Bahri, H., Ben Salem, M., Forster, B. P., et al. (2004). Identification of Hordeum spontaneum alleles improving field performance of barley grown under rainfed conditions. The Annals of Applied Biology, 144, 309–319.Google Scholar
  255. Tanksley, S. D., & McCouch, S. R. (1997). Seed banks and molecular maps: Unlocking genetic potential from the wild. Science, 227, 1063–1066.Google Scholar
  256. Tanno, K., Taketa, S., Takeda, K., & Komatsuda, T. (2002). A DNA marker closely linked to the vrs1 locus (row type gene) indicates multiple origins of six-rowed cultivated barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 104, 54–60.PubMedGoogle Scholar
  257. Tappy, L., Gugolz, E., & Wursch, P. (1996). Effects of breakfast cereals containing various amounts of beta glucans fibres on plasma glucose and insulin responses in NIDDM subjects. Diabetes Care, 19, 831–834.PubMedGoogle Scholar
  258. Tashi, N. (2005). Food preparation from hull-less barley in Tibet. In S. Grando & H. Gomez Macpherson (Eds.), Food barley: Importance, uses and local knowledge (pp. 115–120). Syria: ICARDA.Google Scholar
  259. Taylor, T. G. (1965). The availability of the calcium and phosphorus of plant materials for animals. The Proceedings of the Nutrition Society, 24, 105–112.PubMedGoogle Scholar
  260. Tester, M., & Bacic, A. (2005). Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiology, 137, 791–793.PubMedGoogle Scholar
  261. Tiedemann, A. V., & Firsching, K. H. (2000). Interactive effects of elevated ozone and carbon dioxide on growth and yield of leaf rust-infected versus non-infected wheat. Environnement & Pollution, 108, 357–363.Google Scholar
  262. Tiryakioglu, M., Eker, S., Ozkutlu, F., Husted, S., & Cakmak, I. (2006). Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. Journal of Trace Elements in Medicine and Biology, 20, 181–189.PubMedGoogle Scholar
  263. Tuberosa, R., & Salvi, S. (2006). Genomics-based approaches to improve drought tolerance of crops. Trends in Plant Science, 11, 405–412.PubMedGoogle Scholar
  264. Ullrich, S. E. (2002). Genetics and breeding of barley feed quality attributes. In G. A. Slafer, J.-L. Molina-Cano, R. Savin, J.-L. Araus, & I. Romagosa (Eds.), Barley science: Recent advances from molecular biology to agronomy of yield and quality (pp. 115–142). Binghamton: Food Products.Google Scholar
  265. Urashima, A. S., Martins, T. D., Bueno, C. R. N. C., Favaro, D. B., Arruda, M. A., & Mehta, Y. R. (2004). Triticale and barley: new hosts of Magnaporthe grisea in Sao Paulo, Brazil - relationship with blast of rice and wheat (pp. 251–260). In Rice blast: interaction with rice and control. Proceedings of the 3rd International Rice Blast Conference, Tsukuba Science City, Ibaraki, Japan, 11 to 14 September 2002.Google Scholar
  266. Varshney, R. K., Nayak, S. N., May, G. D., & Jackson, S. A. (2009). Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends, Biotechnology, 27, 522–530.Google Scholar
  267. Von Korff, M., Wang, H., Leon, J., & Pillen, K. (2006). AB-QTL analysis of spring barley: II Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theoretical and Applied Genetics, 112, 1221–1231.Google Scholar
  268. Von Korff, M., Grando, S., Del Greco, A., This, D., Baum, M., & Ceccarelli, S. (2008). Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theoretical and Applied Genetics, 117, 653–669.Google Scholar
  269. von Zitzewitz, J., Szücs, P., Dubcovsky, J., Yan, L., Francia, E., Pecchioni, N., et al. (2005). Molecular and structural characterization of barley vernalization genes. Plant Molecular Biology, 59, 449–467.Google Scholar
  270. Wahbi, A., & Gregory, P. J. (1989). Genotypic differences in root and shoot growth of barley (Hordeum vulgare). 1. Glasshouse studies of young plants and effects of rooting medium. Experimental Agriculture, 25, 375–387.Google Scholar
  271. Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., et al. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-tolerance, disease resistance and higher yield. Proceedings of the National Academy of Sciences of the United States of America, 102, 13386–13391.PubMedGoogle Scholar
  272. Walters, D., Lyon, G. D., & Newton, A. C. (2007). In D. Walters, G. Lyon, & A. Newton (Eds.), Induced resistance for plant defence: a sustainable approach to crop protection (p. 258pp). Oxford: Blackwell Publishing.Google Scholar
  273. Walters, D. R., Havis, N. D., & Oxley, S. J. P. (2008). Ramularia collo-cygni: the biology of an emerging pathogen of barley. FEMS Microbiology Letters, 279, 1–7.PubMedGoogle Scholar
  274. Wei, Y. M., Baum, B. R., Nevo, E., & Zheng, Y. L. (2005). Does domestication mimic speciation? 1. A population-genetic analysis of Hordeum spontaneum and Hordeum vulgare based on AFLP and evolutionary considerations. Canadian Journal of Botany, 83, 1496–1512.Google Scholar
  275. Weltzien, E. (1988). Evaluation of barley (Hordeum vulgare L.) landrace populations originating from different growing regions in the Near East. Plant Breeding, 101, 95–106.Google Scholar
  276. Werner, K., Friedt, W., & Ordon, F. (2005). Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Molecular Breeding, 16, 45–55.Google Scholar
  277. White, P. J., & Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. The New Phytologist, 182, 49–84.PubMedGoogle Scholar
  278. White, P. J., & Brown, P. H. (2010). Plant nutrition for sustainable development and global health. Annals of Botany, 105, 1073–1080.PubMedGoogle Scholar
  279. White, P. J., & Greenwood, D. J. (2011). Properties and management of cationic elements for crop growth. In P. J. Gregory & S. Nortcliff (Eds.), Russell’s soil conditions and plant growth (12th edn). Wiley/Blackwell, in press.Google Scholar
  280. White, P. J., & Hammond, J. P. (2008). Phosphorus nutrition of terrestrial plants. In P. J. White & J. P. Hammond (Eds.), The ecophysiology of plant-phosphorus interactions (pp. 51–81). Dordrecht: Springer.Google Scholar
  281. White, W. B., Bird, H. R., Sunde, M. L., & Marlett, J. A. (1983). Viscosity of β-glucan as a factor in enzymatic improvement of barley for chicks. Poultry Science, 62, 853–862.Google Scholar
  282. White, P. J., Broadley, M. R., Greenwood, D. J., & Hammond, J. P. (2005). Genetic modifications to improve phosphorus acquisition by roots. Proceedings 568. York: International Fertiliser Society.Google Scholar
  283. White, P. J., Bengough, A. G., Bingham, I. J., George, T. S., Karley, A. J., & Valentine, T. A. (2009). Induced mutations affecting root architecture and mineral acquisition in barley. In Q. Y. Shu (Ed.), Induced plant mutations in the genomics era (pp. 338–340). Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  284. Woldeamlak, A. (2001). Mixed cropping of barley (Hordeum vulgare) and wheat (Triticum aestivum) landraces in the Central Highlands of Eritrea. PhD Thesis. The Netherlands: Wageningen University.Google Scholar
  285. Woldeamlak, A., Grando, S., Maatougui, M., & Ceccarelli, S. (2008). Hanfets a barley and wheat mixture in Eritrea: yield, stability and farmer preferences. Field Crops Research, 109, 50–56.Google Scholar
  286. Wood, P. J., Anderson, J. W., Braaten, J. T., Cave, N. A., Scott, F. W., & Vachon, C. (1989). Physiological effects of β-D-glucan rich fractions from oats. Cereal Foods World, 34, 878–882.Google Scholar
  287. Wu, F., Dong, J., Cai, Y., Chen, F., & Zhang, G. (2007). Differences in Mn uptake and subcellular distribution in different barley genotypes as a response to Cd toxicity. Science of the Total Environment, 385, 228–234.PubMedGoogle Scholar
  288. Young, L., & Hobbs, J. (2002). Vertical linkages in agri-food supply chains: changing roles for producers, commodity groups, and government policy. Review of Agricultural Economics, 24, 428–441.Google Scholar
  289. Zhan, J., Fitt, B. D. L., Pinnschmidt, H. O., Oxley, S. J. P., & Newton, A. C. (2008). Resistance, epidemiology and sustainable management of Rhynchosporium secalis populations on barley. Plant Pathology, 57, 1–14.Google Scholar
  290. Zhong, S., Dekkers, J. C. M., Fernando, R. L., & Jannink, J.-L. (2009). Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics, 182, 355–364.PubMedGoogle Scholar
  291. Zhu, Y.-G., Smith, F. A., & Smith, S. E. (2002). Phosphorus efficiencies and their effects on Zn, Cu, and Mn nutrition of different barley (Hordeum vulgare) cultivars grown in sand culture. Australian Journal of Agricultural Research, 53, 211–216.Google Scholar
  292. Zohary, D., & Hopf, M. (1988). Domestication of plants in the old world: The origin and spread of cultivated plants in West Asia, Europe and the Nile Valley. Oxford: Clarendon.Google Scholar
  293. Zong, L. Z., Liang, S., Xu, X., Li, S. H., Jing, J. H., & Monneveux, P. (2008). Relationships between carbon isotope discrimination and leaf morpho-physiological traits in spring-planted spring wheat under drought and salinity stress in Northern China. Australian Journal of Agricultural Research, 59, 941–949.Google Scholar

Copyright information

© Springer Science + Business Media B.V. & International Society for Plant Pathology 2011

Authors and Affiliations

  • Adrian Clive Newton
    • 1
    Email author
  • Andrew J. Flavell
    • 3
  • Timothy S. George
    • 1
  • Philip Leat
    • 2
  • Barry Mullholland
    • 1
  • Luke Ramsay
    • 1
  • Cesar Revoredo-Giha
    • 2
  • Joanne Russell
    • 1
  • Brian J. Steffenson
    • 4
  • J. Stuart Swanston
    • 1
  • William T. B. Thomas
    • 1
  • Robbie Waugh
    • 1
  • Philip J. White
    • 1
  • Ian J. Bingham
    • 2
  1. 1.The James Hutton InstituteDundeeUK
  2. 2.Scottish Agricultural CollegeEdinburghUK
  3. 3.University of Dundee at SCRIDundeeUK
  4. 4.Department of Plant PathologyUniversity of MinnesotaSt. PaulUSA

Personalised recommendations