Food Security

, Volume 3, Issue 1, pp 93–105 | Cite as

Stress-adapted extremophiles provide energy without interference with food production

  • Ray A. Bressan
  • Muppala P. Reddy
  • Suk Ho Chung
  • Dae Jin Yun
  • Lowell S. Hardin
  • Hans J. Bohnert
Original Paper


How to wean humanity off the use of fossil fuels continues to receive much attention but how to replace these fuels with renewable sources of energy has become a contentious field of debate as well as research, which often reflects economic and political factors rather than scientific good sense. It is clear that not every advertized energy source can lead to a sustainable, humane and environment-friendly path out of a future energy crisis. Our proposal is based on two assertions: that the use of food crops for biofuels is immoral, and that for this purpose using land suitable for growing crops productively is to be avoided. We advocate a focus on new “extremophile” crops. These would either be wild species adapted to extreme environments which express genes, developmental processes and metabolic pathways that distinguish them from traditional crops or existing crops genetically modified to withstand extreme environments. Such extremophile energy crops (EECs), will be less susceptible to stresses in a changing global environment and provide higher yields than existing crops. Moreover, they will grow on land that has never been valuable for agriculture or is no longer so, owing to centuries or millennia of imprudent exploitation. Such a policy will contribute to striking a balance between ecosystem protection and human resource management. Beyond that, rather than bulk liquid fuel generation, combustion of various biomass sources including extremophiles for generating electrical energy, and photovoltaics-based capture of solar energy, are superbly suitable candidates for powering the world in the future. Generating electricity and efficient storage capacity is quite possibly the only way for a sustainable post-fossil and, indeed, post-biofuel fuel economy.


Alternative crops Bioenergy generation Extremophiles Abiotic stress tolerance Food or fuel 



Our work has been supported by funds from King-Abdullah-University for Science and Technology of Saudi Arabia, by the World Class University Program (Korea, R32–10148), by the Biogreen 21 Project of the Rural Development Administration (Korea, 20070301034030), and by University of Illinois and Purdue University institutional support.


  1. Achten, W. M. J., Mathijs, E., Verchot, L., Singh, V. P., Aerts, R., & Muys, B. (2007). Jatropha biodiesel fueling sustainability. Biofuels, Bioproducts and Biorefining, 1, 283–291.CrossRefGoogle Scholar
  2. Amtmann, A., Bohnert, H. J., & Bressan, R. A. (2005). Abiotic stress and plant genome evolution. Search for new models. Plant Physiology, 138, 127–130.PubMedCrossRefGoogle Scholar
  3. Aronson, J. A., Pasternak, D., & Danon, A. (1988). Introduction and first evaluation of 120 halophytes under seawater irrigation. In E. E. Whitehead, C. F. Hutchinson, B. N. Timmerman, & R. G. Varady (Eds.), Arid lands today and tomorrow: Proceedings of an international research and development conference (pp. 737–746). Boulder: Westview.Google Scholar
  4. Azam, M. M., Waris, A., & Nahar, N. M. (2005). Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass and Bioenergy, 29, 293–302.CrossRefGoogle Scholar
  5. Bänziger, M., Setimela, P. S., Hodson, D., & Vivek, B. (2006). Breeding for improved abiotic stress tolerance in maize in southern Africa. Agric Water Management, 80, 212–224.CrossRefGoogle Scholar
  6. Beer, L. L., Boyd, E. S., Peters, J. W., & Posewitz, M. C. (2009). Engineering algae for biohydrogen and biofuel production. Current Opinion in Biotechnology, 20, 264–271.PubMedCrossRefGoogle Scholar
  7. Berndes, G., Hoogwijk, M., & van den Broek, R. (2003). The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass and Bioenergy, 25, 1–28.CrossRefGoogle Scholar
  8. Best Research-Cell Efficiencies. National Renewable energy Laboratory, 2007.Google Scholar
  9. Biosaline Biomass; Energy for the Netherlands in 2040 (2004) Report to SenterNovem. J. Hoek (eds.), Ocean Desert Enterprises.Google Scholar
  10. Bogdan, A. V. (1977). Tropical pasture and fodder plants. London: Longman.Google Scholar
  11. Bögre, L., Magyar, Z., & Lopez-Juez, E. (2008). New clues to organ size control in plants. Genome Biology, 9, 226.PubMedCrossRefGoogle Scholar
  12. Boyer, J. S. (1982). Plant productivity and environment. Science, 218, 443–448.PubMedCrossRefGoogle Scholar
  13. Bressan, R. A., Zhang, C., Zhang, H., Hasegawa, P. M., Bohnert, H. J., & Zhu, J. K. (2001). Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiology, 127, 1354–1360.PubMedCrossRefGoogle Scholar
  14. Brown, L. R. (2008). Plan B 3.0: Mobilizing to save civilization. New York: W.W. Norton & Company.Google Scholar
  15. Campbell, J. E., Lobell, D. B., & Field, C. B. (2009). Greater transportation energy and GHG offsets from bioelectricity than ethanol. Science, 324, 1055–1057.PubMedCrossRefGoogle Scholar
  16. Chinnusamy, V., & Zhu, J. K. (2009). Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology, 12, 133–139.PubMedCrossRefGoogle Scholar
  17. Cleark, P. J., & Jacoby, C. A. (1994). Biomass and above ground productivity of salt marsh plants in south eastern Australia. Australian Journal of Marine & Freshwater Research, 45, 1521–1528.CrossRefGoogle Scholar
  18. Dakheel, A. A., Hadrami, G. A., Shoraby, S. A., Shabbir, G. (2008). The potential of salt tolerant plants and marginal resources in developing an integrated forage-live stock production system. 2nd International Salinity forum. Salinity, water and society- global issues, local action. [].
  19. Dash, A. K., Pradhan, R. C., Das, L. M., & Naik, S. N. (2008). Some physical properties of Simarouba fruit and kernel. International Agrophysics, 22, 111–116.Google Scholar
  20. Deshmukh, S. J., & Bhuyar, L. B. (2009). Transesterified hingan (Balanites) oil as a fuel for compression ignition engines. Biomass and Bioenergy, 33, 108–112.CrossRefGoogle Scholar
  21. Duke, J. A. (1983). Handbook of energy crops (unpublished) Available from: URL:
  22. Edmeades, G. O., Bolaños, J., Chapman, S. C., Lafitte, H. R., & Bänziger, M. (1999). Selection improves drought tolerance in tropical maize populations. Crop Science, 39, 1306–1315.CrossRefGoogle Scholar
  23. El Fadl, M. A. (1997). Management of Prosopis juliflora for use in agroforestry systems in the Sudan. University of Helsinki Tropical Forestry Reports, 16, 107.Google Scholar
  24. Evans, L. T., & Fischer, R. A. (1999). Yield potential: it’s definition, measurement, and significance. Crop Science, 39, 1544–1551.CrossRefGoogle Scholar
  25. Evans, D. O., & Rotar, P. P. (1987). Productivity of Sesbania species. Tropical Agriculture, 64, 193–200.Google Scholar
  26. Falkenmark, M., Rockström, J., & Karlberg, L. (2009). Present and future water requirements for feeding humanity. Food Security, 1, 59–69.CrossRefGoogle Scholar
  27. Food and Agriculture Organization of the United Nations. (2003). Application of molecular biology and genomics to genetic enhancement of crop tolerance to abiotic stress.
  28. Gallagher, J. L. (1985). Halophytic crops for cultivation at seawater salinity. Plant and Soil, 89, 323–336.CrossRefGoogle Scholar
  29. Garnier, E., Navas, M.-L., Austin, M. P., Lilley, J. M., & Gifford, R. M. (1997). A problem for biodiversity-productivity studies: how to compare the productivity of multispecific plant mixtures to that of monocultures? Acta Oecologica, 18, 657–670.CrossRefGoogle Scholar
  30. Glenn, E. P., & O’Leary, J. W. (1985). Productivity and irrigation requirements of halophytes grown with seawater in the Sonoran Desert. Journal of Arid Environments, 9, 81–91.Google Scholar
  31. Glenn, E. P., O’Leary, J. W., Watson, M. C., Thompson, T. L., & Kuehl, R. O. (1991). Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science, 251, 1065–1067.PubMedCrossRefGoogle Scholar
  32. Global Climate and Energy Project. (2010). Stanford University,
  33. Goel, V. L., & Behl, H. M. (2005). Growth and productivity assessment of Casuarina glauca Sieb. ex.Spreng on sodic soil sites. Bioresource Technology, 96, 1399–1404.PubMedCrossRefGoogle Scholar
  34. Graham, R. L., Nelson, R., Sheehan, J., Perlack, R. D., & Wright, L. L. (2007). Current and potential U.S. corn stover supplies. Agronomy Journal, 99, 1–11.CrossRefGoogle Scholar
  35. Gutierrez, A. P., & Ponti, L. (2009). Bio-economic sustainability of cellulosic biofuel production on marginal lands. Bulletin of Science Technology and Society, 29, 213–225.Google Scholar
  36. Hall, D. O. (1979). In D. O. Hall (Ed.), Biomass for energy (pp. 1–18). London: UK Section of the International Solar Energy Society.Google Scholar
  37. Hardin, G. (1986). The tragedy of the commons. Science, 162, 1243–1248.Google Scholar
  38. Hardin, L. S. (2008). Meetings that changed the world—Bellagio 1969: the green revolution. Nature, 455, 470–471.PubMedCrossRefGoogle Scholar
  39. Heaton, E. A., Dohleman, F. G., & Long, S. P. (2008). Meeting US biofuel goals with less land: the potential of Miscanthus. Global Change Biology, 14, 2000–2014.CrossRefGoogle Scholar
  40. Hendricks, R. C. & Bushnell, D. M. (2008). Halophyte energy feedstocks: back to our roots. 12th International Symposium on Transport Phenomena and Dynamics of rotating Machinery, Honolulu, Hawaii, 2008.Google Scholar
  41. Huang, J., Pray, C., & Rozelle, S. (2002). Enhancing the crops to feed the poor. Nature, 418, 678–684.PubMedCrossRefGoogle Scholar
  42. Jablonka, E., & Raz, G. (2007). Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Quarterly Reviews of Biology, 84, 131–176.CrossRefGoogle Scholar
  43. Jongschaap, R. E. E., Corre, W. J., Bindraban, P. S., Brandenburg, & W. A. (2007). Claims and facts on Jatropha curcas L. Wageningen, The Netherlands: Plant Research International B.V; <
  44. Kaffka, S. R., & Hills, F. J. (1992). Can feedstock production for biofuels be sustainable in California? California Agriculture, 63, 202–207.Google Scholar
  45. Kant, S., Bi, Y. M., Weretilnyk, E., Barak, S., & Rothstein, S. J. (2008). The Arabidopsis halophytic relative Thellungiella halophila tolerates nitrogen-limiting conditions by maintaining growth, nitrogen uptake, and assimilation. Plant Physiology, 147, 1168–1180.PubMedCrossRefGoogle Scholar
  46. Karmee, S. K., & Chadha, A. (2005). Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresource Technology, 96, 1425–1429.PubMedCrossRefGoogle Scholar
  47. Kawahara, T., Kanazawa, Y., & Sakurai, S. (1981). Biomass and net production of man-made forests in the Philippines. Journal of Japanese Forest Society, 63, 320–327.Google Scholar
  48. Kinzelbach, W. (2009). Water and Sustainability in a Global Perspective. KAUST Inauguration Symposium: Sustainability in a Changing Climate, Thuwal, Saudi Arabia, Sept. 24, 2009Google Scholar
  49. Lam, M. K., Tan, K. T., Lee, K. T., & Mohamed, A. R. (2009). Malaysian palm oil: surviving the food versus fuel dispute for a sustainable future. Renewable & Sustainable Energy Reviews, 13, 1456–1465.CrossRefGoogle Scholar
  50. Laureysens, I., Bogaert, J., Bluest, R., & Ceulemans, R. (2004). Biomass production of 17 poplar clones in a short rotation coppice culture on a waste disposal site and its relation to soil characteristics. Forest Ecology and Management, 187, 295–309.CrossRefGoogle Scholar
  51. Lemus, R., Oldham, L., & Crouse, K. (2008). Soil nutrient recommendations for switchgrass production in Mississippi. In: Annual Meeting Abstracts [CD-ROM]. Southern Plant Nutrient Management Conference State Report, 4–5 November 2008, Olive Branch, MS.Google Scholar
  52. Marris, E. (2008). Water: more crop per drop. Nature, 452, 273–277.PubMedCrossRefGoogle Scholar
  53. McKendry, P. (2002). Energy production from biomass (part 3): gasification technologies. Bioresource Technology, 83, 55–63.Google Scholar
  54. Messmer, R., Fracheboud, Y., Bänziger, M., Vargas, M., Stamp, P., & Ribaut, J. M. (2009). Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theoretical and Applied Genetics, 119, 913–930.PubMedCrossRefGoogle Scholar
  55. Mitchell, D. (2008). A note on rising food prizes. Policy Research Working Paper 4682, The World Bank, Development Prospects Group.Google Scholar
  56. Mizrahi, Y., & Pasternak, D. (1985). Effect of salinity on various agricultural crops. In D. Pasternak & A. San-Pietro (Eds.), Biosalinity in action: Bioproduction with saline water (pp. 301–307). Dordrecht: Martinus Nijhoff.Google Scholar
  57. Moose, S. P., & Mumm, R. H. (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiology, 147, 969–977.PubMedCrossRefGoogle Scholar
  58. Morton, J. F. (1991). The horseradish tree Moringa pterygosperma (Moringaceae)—A boon to arid lands? Economic Botany, 45, 18–333.Google Scholar
  59. Nelson, D. E., Repetti, P. P., Adams, T. R., Creelman, R. A., Wu, J., et al. (2007). Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proceedings of the National Academy of Sciences of the United States of America, 104, 16450–16455.PubMedCrossRefGoogle Scholar
  60. NEDFCL (Northeast Development Finance Corporation Limited). (2002).
  61. Nobel, P. S. (1991a). Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants. The New Phytologist, 119, 183–205.CrossRefGoogle Scholar
  62. Nobel, P. S. (1991b). Environmental productivity indices and productivity for Opuntia ficus-indica under current and elevated atmospheric CO2 levels. Plant Cell and Environment, 14, 637–646.Google Scholar
  63. Odum, E. P. (1974). Halophytes, energetics and ecosystems. In R. J. Reimold & W. H. Queen (Eds.), Ecology of halophytes (pp. 599–602). New York: Academic.Google Scholar
  64. Office of International Affairs [OIA]. (1990). Saline agriculture: Salt-tolerant plants for developing countries. Washington DC: National Academy.Google Scholar
  65. O’Leary, J. W. (1984). The role of halophytes in irrigated agriculture. In R. C. Staples & G. H. Toennissen (Eds.), Salinity tolerance in plants (pp. 285–300). New York: Wiley.Google Scholar
  66. Orsini, F., Paino D’Urzo, M., Inan, G., Serra, S., Oh, D. -H., Mickelbart, M. V., et al. (2010) A comparative study of salt tolerance parameters in eleven wild relatives of Arabidopsis thaliana. Journal of Experimental Botany, 61, 3787–3798.Google Scholar
  67. Palomo, L., & Niell, F. X. (2009). Primary production and nutrient budgets of Sarcocornia perennis spp. Alpine (Lag).castroviejo in the salt marsh of Palmones river estuary (Southern Spain). Aquatic Botany, 91, 130–136.CrossRefGoogle Scholar
  68. Patzek, T. W. (2007). How can we outlive our way of life? 20th round table on sustainable development of biofuels: Is the cure worse than the disease? Château de la Muette: OECD Headquarters.Google Scholar
  69. Petyr, R., Voigt, T., Heaton, E., Dohleman, F., & Long, S. P. (2008). Growing giant Miscanthus in Illinois. http:/
  70. Pimentel, D., Hurd, L. E., Bellotti, A. C., Forster, M. J., Oka, I. N., Sholes, O. D., et al. (1973). Food production and the energy crisis. Science, 182, 443–449.PubMedCrossRefGoogle Scholar
  71. Pitman, M. G., & Laeuchli, A. (2002). Global impact of salinity and agricultural ecosystems. In A. Läuchli & U. Lüttge (Eds.), Salinity: Environment—Plants—Molecules. The Netherlands: Kluwer.Google Scholar
  72. Rivero, R. M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S., et al. (2007). Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proceedings of the National Academy of Sciences of the United States of America, 104, 19631–19636.PubMedCrossRefGoogle Scholar
  73. Samarawira, V. (1983). Date palm—potential source for refined sugar. Economic Botany, 37, 181–186.CrossRefGoogle Scholar
  74. Schmer, M. R., Vogel, K. P., Mitchell, R. B., & Perrin, R. K. (2008). Net energy of cellulosic ethanol from Switchgrass. Procedings of National Academy of Science, 105, 464–469.Google Scholar
  75. Singh, V., & Toky, O. P. (1995). Biomass and net primary productivity in Leucaena, Acacia and Eucalyptus, short rotation, high density (energy) plantations in arid India. J Arid Environments, 31, 301–30.CrossRefGoogle Scholar
  76. Spatari, S., Zhang, Y., & Maclean, H. L. (2005). Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles. Environmental Science & Technology, 39, 9750–9758.CrossRefGoogle Scholar
  77. Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327, 818–822.PubMedCrossRefGoogle Scholar
  78. USDA, NRCS. (2002). Plant Profile for Distichlis spicata (L.) Greene. The PLANTS Database, Version 3.5 ( National Plant Data Center, Baton Rouge, LA 70874-4490 USA.
  79. Vincour, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Current Opinion in Biotechnology, 16, 123–132.Google Scholar
  80. Waddington, S. R., Li, X., Dixon, J., Hyman, G., & de Vicente, M. C. (2010). Getting the focus right: production constraints for six major food crops in Asian and African farming systems. Food Security, 2, 27–48.CrossRefGoogle Scholar
  81. Westlake, D. F. (2008). Comparisons of plant productivity. Biological Reviews, 38, 385–425.CrossRefGoogle Scholar
  82. Weyens, N., van der Lelie, D., Taghavi, S., Newman, L., & Vangronsveld, J. (2009). Exploiting Plant-microbe partnerships to improve biomass production and remediation. Trends in Biotechnology, 27, 591–598.Google Scholar
  83. Williams, C. M. J., Biswas, T. K., Black, I., & Heading, S. (2008). Pathways to prosperity: second generation biomass crops for biofuels using saline lands and wastewater. Agricultural Science, 21, 28–34.Google Scholar
  84. Wong, C. E., Li, Y., Labbe, A., Guevara, D., Nuin, P., Whitty, B., et al. (2006). Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiology, 140, 1437–1450.PubMedCrossRefGoogle Scholar
  85. Woodard, K. R., & Sollenberger, L. E. (2008). Production of biofuel crops in Florida: Elephant grass. Gainesvlle: Institute of Food and Agricultural Sciences, The University of Florida .SS-AGR- 297. (
  86. World Development Report. (2010). Development and climate change, UNDP-Worldbank,
  87. Yaniv, Z., Shabelsky, E., & Schafferman, D. (1999). Colocynth: Potential arid land oilseed from an ancient cucurbit. In J. Janick (Ed.), Prospectives on new crops and new uses (pp. 257–261). Alexandria: ASHS.Google Scholar
  88. Yusoff, S., & Hansen, S. B. (2007). Feasibility study of performing a life cycle assessment on crude palm oil production in Malaysia. International J Life Cycle Assessment, 12, 50–58.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. & International Society for Plant Pathology 2011

Authors and Affiliations

  • Ray A. Bressan
    • 1
    • 2
    • 5
  • Muppala P. Reddy
    • 2
  • Suk Ho Chung
    • 3
  • Dae Jin Yun
    • 4
  • Lowell S. Hardin
    • 6
  • Hans J. Bohnert
    • 4
    • 5
  1. 1.Department of Horticulture and Landscape ArchitecturePurdue UniversityW. LafayetteUSA
  2. 2.Plant Stress Genomics Research CenterKing Abdullah University for Science and TechnologyThuwalSaudi Arabia
  3. 3.Clean Combustion Research CenterKing Abdullah University for Science and TechnologyThuwalSaudi Arabia
  4. 4.Department of Plant Biology and Department of Crop SciencesUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  5. 5.Division of Applied Life Sciences, WCU ProgramGyeongsang National UniversityJinjuSouth Korea
  6. 6.Department of Agricultural EconomicsPurdue UniversityW. LafayetteUSA

Personalised recommendations