CEAS Space Journal

, Volume 11, Issue 4, pp 543–551 | Cite as

Damping of piezoelectric space instruments: application to an active optics deformable mirror

  • David AlalufEmail author
  • Bilal MokraniEmail author
  • Kainan Wang
  • André Preumont
Original Paper


This paper presents the shunt damping of a unimorph piezoelectric mirror intended to be used as an active secondary corrector in future space telescopes. We propose to take advantage of the actuation capability of the piezoelectric mirror, to increase its natural damping during the critical launch phase of the spacecraft. The piezoelectric actuators, intended to be used for active optics, are shunted on a passive resistive and inductive RL circuit during the launch operation. The proposed concept is verified numerically and experimentally on a piezoelectric deformable mirror prototype, developed on behalf of the European Space Agency. We show that the shunt damping significantly reduces the response of the most critical mode of the mirror (− 23 dB) as well as the stress in the mirror when subjected to a typical vibro-acoustic launch load. This reduces the risk of damaging the mirror during the delicate launch phase, without increasing the complexity of the design.


Active optics Adaptive optics Deformable mirrors Space telescopes Piezoelectric shunt Vibration damping 



The authors thank prof. M. Horodinca and prof. I. Romanescu from University of Ghorghe Asachi, Iasi, Romania, for the realization of the experimental setup. This research was partially supported by “Région Wallonne”, in the framework of “MECATEC-M4” project, and by the European Space Agency (ESA) in the framework of BIALOM project. Kainan Wang is supported by the China Scholarship Council. The support of Centre Spatial de Liège is highly appreciated.


  1. 1.
    Jenkins, C.H.: Progress in Astronautics and Aeronautics: Gossamer Spacecraft: Membrane And Inflatable Structures Technology for Space Applications, vol. 191. American Institute of Aeronautics and Astronautics, Reston (2001)Google Scholar
  2. 2.
    Madec, P.-Y.: Overview of deformable mirror technologies for adaptive optics and astronomy. In: Ellerbroek, Marchetti, Véran, (eds.) Adaptive Optics Systems III, vol. 8447. SPIE, Bellingham (2012)CrossRefGoogle Scholar
  3. 3.
    Alaluf, D.: Piezoelectric mirrors for adaptive optics in space telescopes, PhD thesis. Université Libre de Bruxelles, Active Structures Laboratory (2016)Google Scholar
  4. 4.
    Alaluf, D., Bastaits, R., Wang, K., Horodinca, M., Martic, G., Mokrani, B., Preumont, A.: Unimorph mirror for adaptive optics in space telescopes. Appl. Opt. 57(15), 3629–3638 (2018)CrossRefGoogle Scholar
  5. 5.
    Rausch, P., Verpoort, S., Wittrock, U.: Unimorph deformable mirror for space telescopes: design and manufacturing. Opt. Express 23(15), 19469–19477 (2015)CrossRefGoogle Scholar
  6. 6.
    Rausch, P., Verpoort, S., Wittrock, U.: Unimorph deformable mirror for space telescopes: environmental testing. Opt. Express 24(2), 1528–1542 (2016)CrossRefGoogle Scholar
  7. 7.
    Bimorph Adaptive Large Optical Mirror Demonstrator. ESA/ESTEC contract Nº 400010294/11/NL/CPGoogle Scholar
  8. 8.
    Forward, R.L.: Electronic damping of vibration in optical structures. Appl. Opt. 18(5), 690–697 (1979)CrossRefGoogle Scholar
  9. 9.
    Forward R. L.: Electromechanical transducer-coupled mechanical structure with negative capacitance compensation circuit. US Patent 4158787 (1979)Google Scholar
  10. 10.
    Cohan, L.E., Miller, D.W.: Vibroacoustic launch analysis and alleviation of lightweight active mirrors. Opt. Eng. 50(1), 013002 (2011)CrossRefGoogle Scholar
  11. 11.
    Hagood, N.W., von Flotow, A.: Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 146(2), 243–268 (1991)CrossRefGoogle Scholar
  12. 12.
    Hollkamp, J.J.: Multimodal passive vibration suppression with piezoelectric materials and resonant shunts. J. Intell. Mater. Syst. Struct. 5(1), 49–57 (1994)CrossRefGoogle Scholar
  13. 13.
    Mokrani, B., Burda, I., Preumont, A.: Adaptive Inductor for Vibration Damping in Presence of Uncertainty, in Smart Structures and Materials. Springer, NY (2017)Google Scholar
  14. 14.
    Richard C., Guyomar D., Audigier D. Bassaler H.: Enhanced semi passive damping using continuous switching of a piezoelectric device on an inductor. Proceeding of the SPIE International Symposium on Smart Structures and Materials, Newport Beach, CA, United States, pp 288–300 (2000)Google Scholar
  15. 15.
    Mokrani, B., Rodrigues, G., Burda, I., Bastaits, R., Preumont, A.: Synchronized switch damping on inductor and negative capacitance. J. Intell. Mater. Syst. Struct. 23(18), 2065–2075 (2012)CrossRefGoogle Scholar
  16. 16.
    Adelman, N.T.: Spherical mirror with piezoelectrically controlled curvature. Appl. Opt. 16, 3075–3076 (1977)CrossRefGoogle Scholar
  17. 17.
    Kokorowski, S.A.: Analysis of adaptive optical elements made from piezoelectric bimorphs. J. Opt. Soc. Am. 69, 181–187 (1979)CrossRefGoogle Scholar
  18. 18.
    Steinhaus, E., Lipson, S.: Bimorph piezoelectric flexible mirror. J. Opt. Soc. Am. 69, 478–481 (1979)CrossRefGoogle Scholar
  19. 19.
    Bastaits, R., Alaluf, D., Horodinca, M., Romanescu, I., Burda, I., Martic, G., Rodrigues, G., Preumont, A.: Segmented bimorph mirrors for adaptive optics: segment design and experiment. Appl. Opt. 53(29), 6635–6642 (2014)CrossRefGoogle Scholar
  20. 20.
    Preumont, A.: Mechatronics, Dynamics of Electromechanical and Piezoelectric Systems. Springer, NY (2006)zbMATHGoogle Scholar
  21. 21.
    Piefort, V., Loix, N., Preumont, A.: Modeling of piezolaminated composite shells for vibration control, ESA Conference on Spacecraft Structures, Materials and Mechanical Testing, ESA SP-428, Braunschweig, Germany (1999)Google Scholar
  22. 22.
    Piefort, V.: Finite element modeling of piezoelectric active structures, PhD Thesis, Université Libre de Bruxelles, Active Structures Laboratory (2001)Google Scholar
  23. 23.
    Asami, T., Nishihara, O., Baz, A.M.: Analytical solutions to H and H2 optimization of dynamic vibration absorbers attached to damped linear systems. J. Vib. Acoust. 124(2), 284–295 (2002)CrossRefGoogle Scholar
  24. 24.
    Soltani, P., Kerschen, G., Tondreau, G., Deraemaeker, A.: Piezoelectric vibration damping using resonant shunt circuits: an exact solution. Smart Mater. Struct. 23(12), 125014 (2014)CrossRefGoogle Scholar
  25. 25.
    Preumont, A., Piefort, V.: Predicting high-cycle fatigue life with finite elements. ASME J. Vib. Acoust. 16, 245–248 (1994)CrossRefGoogle Scholar
  26. 26.
    Philbrick Researches Inc: Application Manual for Computing Amplifiers for Modeling, Measuring, Manipulating and Much Else. Nimord Press, Boston (1965)Google Scholar
  27. 27.
    Mokrani, B., Bastaits, R., Horodinca, M., Romanescu, I., Burda, I., Viguié, R., Preumont, A.: Parallel piezoelectric shunt damping of rotationally periodic structures. Adv. Mater. Sci. Eng. 2015, Article ID 162782 (2015)Google Scholar
  28. 28.
    Preumont, A.: Vibration Control of Active Structures: an Introduction, vol. 246. Springer, NY (2018)CrossRefGoogle Scholar
  29. 29.
    Tang, J., Wang, K.W.: Vibration control of rotationally periodic structures using passive piezoelectric shunt networks and active compensation. J. Vib. Acoust. 121(3), 379–390 (1999)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lossouarn, B., Deü, J.F., Aucejo, M., Cunefare, K.A.: Multimodal vibration damping of a plate by piezoelectric coupling to its analogous electrical network. Smart Mater. Struct. 25(11), 115042 (2016)CrossRefGoogle Scholar

Copyright information

© CEAS 2019

Authors and Affiliations

  1. 1.Department of Control Engineering and System AnalysisUniversité Libre de BruxellesBrusselsBelgium
  2. 2.ESA/STEC, Optoelectronics SectionNoordwijkThe Netherlands
  3. 3.Department of Mechanical, Materials and Aerospace EngineeringUniversity of LiverpoolLiverpoolUK
  4. 4.Mechatronics DepartmentASMLVeldhovenThe Netherlands

Personalised recommendations