Advertisement

CEAS Space Journal

, Volume 11, Issue 4, pp 553–559 | Cite as

Misalignment estimation for active telescopes

  • C. Escolle
  • V. MichauEmail author
  • M. Ferrari
  • T. Fusco
  • E. Hugot
Original Paper
  • 22 Downloads

Abstract

The estimation of the misalignment of an active telescope, from aberrations measured in its focal plane, is a tomographic issue. MMSE-based estimation is successfully used in optical tomography issues, like multiconjugate adaptive optics, where the problem is linear, and the phase perturbation spectrum rapidly decreasing. The implementation of MMSE developed in the case of multiconjugate adaptive optics has been applied to the alignment of active telescopes, although the forward problem is not linear, and the aberration spectrum different. Its performance is characterized by numerical modeling in the case of a TMA type large-field imaging space telescope, and compared to the classical Least-Square approach. The MMSE estimation brings a significant gain in terms of robustness and accuracy.

Keywords

Active optics Telescope MMSE Inverse problem Space 

Notes

Acknowledgements

This work has been performed with the support of a Ph.D. grant from CNES. The authors would like to thank F. Cassaing, J. M. Conan, and L. Mugnier for fruitful discussion.

References

  1. 1.
    Acton, D.S., Atcheson, P.D., Cermak, M., Kingsbury, L.K., Shi, F., Redding, D.C.: James Webb Space Telescope wavefront sensing and control algorithms. In: Optical, Infrared, and Millimeter Space Telescopes. Glasgow  (2004).  https://doi.org/10.1117/12.551846
  2. 2.
    Arridge, S.R., Schotland, J.C.: Optical tomography: forward and inverse problems. Inverse Prob. 25(12), 123010 (2009).  https://doi.org/10.1088/0266-5611/25/12/123010 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bastaits, R., Rodrigues, G., Mokrani, B., Preumont, A.: Active optics of large segmented mirrors: dynamics and control. J. Guid. Control Dyn. 32(6), 1795–1803 (2009).  https://doi.org/10.2514/1.44041 CrossRefGoogle Scholar
  4. 4.
    Cassar, G., Costes, V., Escarrat, L.: Optical design of a compact telescope for the next generation Earth observation system. In: Armandillo, E., Karafolas, N., Cugny, B. (eds.) International Conference on Space Optics—ICSO 2012. Ajaccio (2017).  https://doi.org/10.1117/12.2309055
  5. 5.
    Dimmler, M., Erm, T., Bauvir, B., Sedghi, B., Bonnet, H., Müller, M., Wallander, A.: E-ELT primary mirror control system. In: Ground-based and Airborne Telescopes II, vol. 70121O. Marseille (2008).  https://doi.org/10.1117/12.790476
  6. 6.
    Feinberg, L., Cohen, L., Dean, B., Hayden, W., Howard, J., Keski-Kuha, R.: Space telescope design considerations. Opt. Eng. 51(1), 011006 (2012).  https://doi.org/10.1117/1.OE.51.1.011006 CrossRefGoogle Scholar
  7. 7.
    Fusco, T., Conan, J.M., Rousset, G., Mugnier, L.M., Michau, V.: Optimal wave-front reconstruction strategies for multiconjugate adaptive optics. J. Opt. Soc. Am. 18(10), 2527–38 (2001)CrossRefGoogle Scholar
  8. 8.
    Gardner, J.P., Mather, J.C., Clampin, M., Doyon, R., Greenhouse, M.A., Hammel, H.B., Hutchings, J.B., Jakobsen, P., Lilly, S.J., Long, K.S., Lunine, J.I., Mccaughrean, M.J., Mountain, M., Nella, J., Rieke, G.H., Rieke, M.J., Rix, H.W., Smith, E.P., Sonneborn, G., Stiavelli, M., Stockman, H.S., Windhorst, R.A., Wright, G.S.: The James Webb Space Telescope. Sp. Sci. Rev. 123(4), 485–606 (2006).  https://doi.org/10.1007/s11214-006-8315-7 CrossRefGoogle Scholar
  9. 9.
    Guisard, S., Noethe, L., Spyromilio, J.: Performance of active optics at the VLT. In: Optical Design, Materials, Fabrication, and Maintenance. Munich (2000).  https://doi.org/10.1117/12.391506
  10. 10.
    Joseph, D.P., Tou, T.J.: On linear control theory. Trans. Am. Inst. Electr. Eng. Part II Appl. Ind. 80(4), 193–196 (1961)Google Scholar
  11. 11.
    Korsch, D.: Anastigmatic three-mirror telescope. Appl. Opt. 16(8), 2074 (1977).  https://doi.org/10.1364/AO.16.002074 CrossRefGoogle Scholar
  12. 12.
    McLeod, B.A.: Collimation of fast wide-field telescopes. Publ. Astron. Soc. Pac. 108(720), 217 (1996)CrossRefGoogle Scholar
  13. 13.
    Michau, V., Rousset, G., Fontanella, J.: Wavefront sensing from extended sources. In: Real Time and Post Facto Solar Image Correction, pp. 124–128 (1993)Google Scholar
  14. 14.
    Mora, A., Vosteen, A.: Gaia in-orbit realignment: overview and data analysis. In: Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, vol. 84421Q.  Amsterdam (2012).  https://doi.org/10.1117/12.926313
  15. 15.
    Mugnier, L.M., Robert, C., Conan, J.M., Michau, V., Salem, S.: Myopic deconvolution from wave-front sensing. J. Opt. Soc. Am. A 18(4), 862–872 (2001).  https://doi.org/10.1364/JOSAA.18.000862 CrossRefGoogle Scholar
  16. 16.
    Neichel, B., Rigaut, F., Bec, M., Garcia-Rissmann, A.: Reconstruction strategies for GeMS. In: 1st AO4ELT Conference—Adaptive Optics for Extremely Large Telescopes, p. 02010. EDP Sciences, Paris, France (2010).  https://doi.org/10.1051/ao4elt/201002010
  17. 17.
    Noethe, L., Guisard, S.: Analytical expressions for field astigmatism in decentered two mirror telescopes and application to the collimation of the ESO VLT. Astron. Astrophys. Suppl. Ser. 144(1), 157–167 (2000).  https://doi.org/10.1051/aas:2000201 CrossRefGoogle Scholar
  18. 18.
    Noethe, L., Guisard, S.: Final alignment of the VLT. In: Optical Design, Materials, Fabrication, and Maintenance.  Munich (2000).  https://doi.org/10.1117/12.391501
  19. 19.
    Noll, R.J.: Zernike polynomials and atmospheric turbulence*. J. Opt. Soc. Am. 66(3), 207 (1976).  https://doi.org/10.1364/JOSA.66.000207 CrossRefGoogle Scholar
  20. 20.
    Ono, Y.H., Correia, C., Conan, R., Blanco, L., Neichel, B., Fusco, T.: Fast iterative tomographic wavefront estimation with recursive Toeplitz reconstructor structure for large-scale systems. J. Opt. Soc. Am.A 35(8), 1330 (2018).  https://doi.org/10.1364/JOSAA.35.001330 CrossRefGoogle Scholar
  21. 21.
    Piatrou, P., Chanan, G.: Tomographic alignment algorithm for an extremely large three-mirror telescope: invisible modes. Appl. Opt. 49(33), 6395 (2010).  https://doi.org/10.1364/AO.49.006395 CrossRefGoogle Scholar
  22. 22.
    Platt, B.C., Shack, R.: History and principles of Shack-Hartmann wavefront sensing. J. Refract. Surg. 17(5), S573–S577 (2001).  https://doi.org/10.3928/1081-597X-20010901-13 CrossRefGoogle Scholar
  23. 23.
    Rousset, G.: Wave-front sensors. In: Roddier, F. (ed.) Adaptive Optics in Astronomy. Cambridge University Press, Cambridge (1999)Google Scholar
  24. 24.
    Schechter, P.L., Burley, G.S., Hull, C.L., Johns, M., Martin, H.M., Schaller, S., Shectman, S.A., West, S.C.: Active optics on the Baade 6.5-m (Magellan I) Telescope. In: Large Ground-based Telescopes, vol. 4837, pp. 619–628. International Society for Optics and Photonics (2003)Google Scholar
  25. 25.
    Schechter, P.L., Levinson, R.S.: Generic misalignment aberration patterns in wide-field telescopes. Publ. Astron. Soc. Pac. 123(905), 812–832 (2011).  https://doi.org/10.1086/661111 CrossRefGoogle Scholar
  26. 26.
    Schipani, P., Brescia, M., Marty, L.: The active optics control software for the VST telescope. In: Advanced Software and Control for Astronomy, vol. 627417.  Orlando (2006).  https://doi.org/10.1117/12.670516
  27. 27.
    Schroeder, D.J.: Astronomical Optics. Elsevier, Oxford (1999)Google Scholar
  28. 28.
    Shack, R.V., Thompson, K.: Influence of alignment errors of a telescope system on its aberration field. In: Optical Alignment I. San Diego (1980).  https://doi.org/10.1117/12.959464
  29. 29.
    Thompson, K.: Description of the third-order optical aberrations of near-circular pupil optical systems without symmetry. J. Opt. Soc. Am. A 22(7), 1389–1401 (2005).  https://doi.org/10.1364/JOSAA.26.000699 CrossRefGoogle Scholar
  30. 30.
    Upton, R., Cho, M., Rimmele, T.: Force-optimized alignment for optical control of the advanced technology solar telescope. Appl. Opt. 49(31), G105 (2010).  https://doi.org/10.1364/AO.49.00G105 CrossRefGoogle Scholar
  31. 31.
    Wallner, E.P.: Optimal wave-front correction using slope measurements. J. Opt. Soc. Am. 73(12), 1771 (1983).  https://doi.org/10.1364/JOSA.73.001771 CrossRefGoogle Scholar
  32. 32.
    Wilson, R., Franza, F., Noethe, L.: Active optics: I. A system for optimizing the optical quality and reducing the costs of large telescopes. J. Mod. Opt. 34(4), 485–509 (1987).  https://doi.org/10.1080/09500348714550501 CrossRefGoogle Scholar

Copyright information

© CEAS 2019

Authors and Affiliations

  1. 1.ONERA/DOTA, Université Paris SaclayChâtillonFrance
  2. 2.LAM, UMR 7326MarseilleFrance

Personalised recommendations