Advertisement

The BepiColombo Laser Altimeter (BELA): a post-launch summary

  • Nicolas ThomasEmail author
  • Hauke Hussmann
  • Luisa M. Lara
Original Paper
  • 11 Downloads

Abstract

We provide a brief description of the BepiColombo Laser Altimeter experiment for the joint ESA-JAXA mission to Mercury, BepiColombo. The text describes the main elements of the instrument and discusses several of the problems encountered during the instrument development. The actions taken to mitigate the issues are also described and the resulting performance of the instrument as determined by combining ground test data with models of Mercury and the spacecraft orbit is presented. The instrument has met the requirements set in 2005 and should provide a solid data set for the global study of the topography and internal structure of Mercury.

Keywords

BepiColombo BELA Laser altimeter 

Notes

Acknowledgements

BELA is a joint Swiss–German project with the participation of Spain. We gratefully acknowledge financial support from the Swiss Space Office via ESA’s PRODEX programme, the German Aerospace Center’s Space Administration, the Ministerio de Ciencia e Innovación, and the Ministerio de Economía y Competitividad.

References

  1. 1.
    Benkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M., Ferri, P., Middleton, H.R., Ziethe, R.: BepiColombo comprehensive exploration of Mercury: mission overview and science goals. Planet. Space Sci. 58, 2–20 (2010)CrossRefGoogle Scholar
  2. 2.
    Gardner, C.S.: Ranging performance of satellite laser altimeters. Proc. IEEE 30(5), 1061–1072 (1992)Google Scholar
  3. 3.
    Zuber, M.T., Smith, D.E., Solomon, S.C., Muhleman, D.O., Head, J.W., Garvin, J.B., Abshire, J.B., Bufton, J.L.: J. Geophys. Res. 97(E5), 7781–7797 (1992)CrossRefGoogle Scholar
  4. 4.
    Abshire, J.B., Sun, X., Afzal, R.S.: Mars Orbiter Laser Altimeter: receiver model and performance analysis. Appl. Opt. 39(15), 2449–2460 (2000)CrossRefGoogle Scholar
  5. 5.
    Bufton, J.L.: Laser altimetry measurements from aircraft and spacecraft. Proc. IEEE 77(3), 463–477 (1989)CrossRefGoogle Scholar
  6. 6.
    Smith, D.E., Zuber, M.T., Phillips, R.J., Solomon, S.C., Hauck II, S.A., Lemoine, F.G., Mazarico, E., Neumann, G.A., Peale, S.J., Margot, J.-L., Johnson, C.L., Torrence, M.H., Perry, M.E., Rowlands, D.D., Goossens, S., Head, J.W., Taylor, A.H.: Gravity field and internal structure of Mercury from MESSENGER. Science 336, 214 (2012)CrossRefGoogle Scholar
  7. 7.
    Kallenbach, R., Murphy, E., Gramkow, B., Rech, M., Weidlich, K., Leikert, T., Henkelmann, R., Trefzger, B., Metz, B., Michaelis, H., Lingenauber, K., DelTogno, S., Behnke, T., Thomas, N., Piazza, D., Seiferlin, K.: Space-qualified laser system for the BepiColombo Laser Altimeter. Appl. Opt. 52, 8732 (2013)CrossRefGoogle Scholar
  8. 8.
    Seiferlin, K., Chakraborty, S., Gunderson, K., Fischer, J., Lüthi, B., Piazza, D., Rieder, M., Sigrist, M., Thomas, N., Weigel, T.: Design and manufacture of a lightweight reflective baffle for the BepiColombo Laser Altimeter. Opt. Eng. 46, 043003 (2007)CrossRefGoogle Scholar
  9. 9.
    Beck, T., Lüthi, B., Messina, G., Piazza, D., Seiferlin, K., Thomas, N.: Thermal analysis of a reflective baffle designed for space applications. Acta Astronaut. 69, 323–334 (2011)CrossRefGoogle Scholar
  10. 10.
    Beck, T., Bieler, A., Thomas, N.: Numerical thermal mathematical model correlation to thermal balance test using adaptive particle swarm optimisation (APSO). Appl. Therm. Eng. 38, 168–174 (2012)CrossRefGoogle Scholar
  11. 11.
    Thomas, N., Beck, T., Chakraborty, S., Gerber, M., Graf, S., Piazza, D., Roethlisberger, G.: A wide-beam solar simulator for simulating the solar flux at the orbit of Mercury. Meas. Sci. Technol. 22, 065903 (2011)CrossRefGoogle Scholar
  12. 12.
    Kallenbach, R., Behnke, T., Perplies, H., Henkelmann, R., Rech, M., Geissbuhler, U., Peteut, A., Lichopoj, A., Schroedter, R., Michaelis, H., Seiferlin, K., Thomas, N., Castro, J.M., Herranz, M., Lara, L.: Electromagnetic compatibility of transmitter, receiver, and communication port of a space-qualified laser altimeter. ESA Workshop on Aerospace EMS 738, 54 (2016)Google Scholar
  13. 13.
    Chakraborty, S., Affolter, M., Gunderson, K., Neubert, J., Thomas, N., Beck, T., Gerber, M., Graf, S., Piazza, D., Pommerol, A., Roethlisberger, G., Seiferlin, K.: High accuracy alignment facility for the receiver and transmitter of the BepiColombo Laser Altimeter. Appl. Opt. 51, 4907 (2012)CrossRefGoogle Scholar
  14. 14.
    Gouman, J., Beck, T., Affolter, M., Thomas, N., Geissbühler, U., Peteut, A., Bandy, T., Servonet, A., Piazza, D., Seiferlin, K., Ghose, K.: Measurement and stability of the pointing of the BepiColombo Laser Altimeter under thermal load. Acta Astronaut. 105, 171–180 (2014)CrossRefGoogle Scholar
  15. 15.
    Dach, R., Lutz, S., Walser, P., Fridez, P. (Eds.) (2015) Bernese GNSS Software Version 5.2. Documentation, Astronomical Institute, University of Bern, Bern. ISBN: 78-3-906813-05-9.  https://doi.org/10.7892/boris.72297

Copyright information

© CEAS 2019

Authors and Affiliations

  1. 1.Space Research and Planetology DivisionUniversity of BernBernSwitzerland
  2. 2.German Aerospace CenterInstitute of Planetary Research, Planetary GeodesyBerlinGermany
  3. 3.Instituto de Astrofísica de AndalucíaGranadaSpain

Personalised recommendations