Advertisement

CEAS Space Journal

, Volume 11, Issue 4, pp 567–578 | Cite as

Broadband antireflection coatings for visible and infrared ranges

  • Frédéric Lemarquis
  • Thomas Begou
  • Antonin Moreau
  • Julien LumeauEmail author
Original Paper
  • 57 Downloads

Abstract

Antireflection coatings are critical elements for space applications as they will influence the overall performances of optical systems. They are among the most classical elements that are produced with optical coatings but remain a challenge when high performances are required. In this paper, we present some recent results based on thin film technology for the production of antireflection coatings dedicated to visible, near-IR and mid-IR spectral ranges. We first present a theoretical and experimental study of broadband antireflection coatings for (400–1100)-nm spectral range. We then show antireflection coatings covering the (1.5–15)-µm range. Experimental demonstrations and limitations are presented.

Keywords

Optical coatings Antireflection coatings Thin film design Physical vapor deposition 

Notes

Acknowledgements

This work was carried out within the framework of a Recherche et Technologie (R&T) project funded by the French Space Agency (CNES). This work was partially funded by Centre National d’Etudes Spatiales Grant number R-S13/OT-0006-030.

References

  1. 1.
    Strong, J.: On a method of decreasing the reflection from nonmetallic substances. J. Opt. Soc. Am. 26(1), 73–74 (1936)CrossRefGoogle Scholar
  2. 2.
    Dobrowolski, J.A., Sullivan, B.T.: Universal antireflection coatings for substrates for the visible spectral region. Appl. Opt. 35, 4993–4997 (1996)CrossRefGoogle Scholar
  3. 3.
    Lemarquis, F., Marchand, G., Amra, C.: Design and manufacture of low-absorption ZnS–YF3 antireflection coatings in the 3.5–16-μm spectral range. Appl. Opt. 37, 4239–4244 (1998)CrossRefGoogle Scholar
  4. 4.
    Dobrowolski, J.A., Guo, Y., Tiwald, T., Ma, P., Poitras, D.: Toward perfect antireflection coatings. 3. Experimental results obtained with the use of Reststrahlen materials. Appl. Opt. 45, 1555–1562 (2006)CrossRefGoogle Scholar
  5. 5.
    Tan, G., Lee, J.-H., Lan, Y.-H., Wei, M.-K., Peng, L.-H., Cheng, I.-C., Wu, S.-T.: Broadband antireflection film with moth-eye-like structure for flexible display applications. Optica 4, 678–683 (2017)CrossRefGoogle Scholar
  6. 6.
    Amotchkina, T.V.: Empirical expression for the minimum residual reflectance of normal- and oblique-incidence antireflection coatings. Appl. Opt. 47, 3109–3113 (2008)CrossRefGoogle Scholar
  7. 7.
    Tikhonravov, A.V., Trubetskov, M.K., DeBell, G.W.: Optical coating design approaches based on the needle optimization technique. Appl. Opt. 46, 704–710 (2007)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    M. Scherer, J. Pistner, Lehnert, W.: UV- and VIS filter coatings by plasma assisted reactive magnetron sputtering (PARMS). In: Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper MA7Google Scholar
  10. 10.
    A. Zoeller, M. Boos, H. Hagedorn, W. Klug, C. Schmitt: High accurate in situ optical thickness monitoring. In: Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2004), paper TuE10Google Scholar
  11. 11.
    Vignaux, M., Lemarchand, F., Begou, T., Grèzes-Besset, C., Lumeau, J.: Trinary mappings: a new tool for the determination of potential spectral paths for optical monitoring of optical interference filters. Appl. Opt. 57(24), 7012–7020 (2018)CrossRefGoogle Scholar
  12. 12.
    Vignaux, M., Lemarchand, F., Begou, T., Grèzes-Besset, C., Lumeau, J.: Automated method for the determination of the all-optical monitoring strategy of complex thin-film filters. Opt. Express 27(9), 12373–12390 (2019)CrossRefGoogle Scholar
  13. 13.
    Berning, P.: Use of equivalent films in the design of infrared multilayer antireflection coatings. J. Opt. Soc. Am. 52, 431–436 (1961)CrossRefGoogle Scholar
  14. 14.
    Trubetskov, M., Amotchkina, T., Tikhonravov, A.: Automated construction of monochromatic monitoring strategies. Appl. Opt. 54, 1900–1909 (2015)CrossRefGoogle Scholar
  15. 15.
    Ehlers, H., Ristau, D.: Advanced control and modeling of deposition processes. Chin. Opt. Lett. s1(11), S10203 (2013)Google Scholar
  16. 16.
    A. Zöller, M. Boos, H. Hagedorn, B. Romanov: Computer simulation of coating processes with monochromatic monitoring. In: Proceedings of SPIE 7101, Advances in Optical Thin Films III, 71010G (25 September 2008)Google Scholar
  17. 17.
    Macleod, H.A.: Thin-Film Optical Filters, 4th edn. Taylor & Francis, Boca Raton (2010)CrossRefGoogle Scholar

Copyright information

© CEAS 2019

Authors and Affiliations

  1. 1.Aix Marseille Univ, CNRS, Centrale Marseille, Institut FresnelMarseilleFrance

Personalised recommendations