Advertisement

Fast, robust and near-optimal approximation of GTO trajectories and payload capacities of multistage rockets

  • Aaron D. KochEmail author
Original Paper
  • 3 Downloads

Abstract

A method for automatically generating approximate trajectories for multistage rockets, launching into a geostationary transfer orbit, is presented. It can either be used to generate an initial guess or to determine the payload capacity of a given launcher. Only the apogee is directly optimized. When the maximum payload of the launcher is used, the perigee will gravitate towards its target value. The method is applicable to configurations consisting of three stages or two stages plus boosters. The trajectory is divided into three steps, one for each stage plus one for all boosters. Five control parameters are used: The first is the constant pitch rate, used during the pitch over maneuver. The other four define the angle of attack rate functions. A declining exponential function is used for \(\dot{\alpha }_2(t)\), whereas \(\dot{\alpha }_3(t)\) is chosen so that \(\alpha _3(t)\) becomes an inverted parabola. The trajectory algorithm consists of an outer and an inner loop. The outer loop varies the pitch rate to attain the correct apogee. It calls the inner loop, which adjusts the two parameters that define \(\dot{\alpha }_2(t)\) so that the flight path angle rate at the end of the second step becomes zero. Tests were performed for a model of Ariane 40. Its payload capacity was determined in less than \({30}\hbox { s}\) and the result matched the one produced by a conventional approach. Moreover, a Monte Carlo simulation, based on the Ariane 40 model, was performed for both applications. The success rate was 94% for the first and 93% for the second case.

Keywords

Multistage rockets Trajectory optimization Initial guess generation Performance evaluation 

Abbreviation

DLR

German Aerospace Center

GTO

Geostationary transfer orbit

MCS

Monte Carlo simulation

MECO

Main engine cutoff

NaN

Not a number

TAM

Trajectory approximation method

Notes

Acknowledgements

Data were provided by the European Space Agency to DLR for the atmospheric model of Kourou (communication from W. Flury to D. Wolf, 21 Dec. 1989) and Ariane 40 (communication from J. F. Lieberherr to D. Wolf, 17 Jan. 1990). The flowcharts were designed with Microsoft Visio. All other plots were made with the Python package Matplotlib [15].

References

  1. 1.
    Ahnert, K., Mulansky, M.: Boost.Numeric.Odeint. https://www.boost.org/doc/libs/1_65_0/libs/numeric/odeint/doc/html/ (2017). Accessed 5 June 2018
  2. 2.
    Arianespace.: Arianespace vol 124. Press release (1999)Google Scholar
  3. 3.
    Arianespace.: Ariane 4 user’s manual (1999)Google Scholar
  4. 4.
    Arianespace.: Arianespace vol 126. Press release (2000)Google Scholar
  5. 5.
    Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21(2), 193–207 (1998).  https://doi.org/10.2514/2.4231 CrossRefzbMATHGoogle Scholar
  6. 6.
    Bonalli, R., Hérissé, B., Trélat, E.: Analytical initialization of a continuation-based indirect method for optimal control of endo-atmospheric launch vehicle systems. IFAC PapersOnLine 50(1), 482–487 (2017).  https://doi.org/10.1016/j.ifacol.2017.08.095 CrossRefGoogle Scholar
  7. 7.
    Calise, A.J., Melamed, N., Lee, S.: Design and evaluation of a three-dimensional optimal ascent guidance algorithm. J. Guid. Control Dyn. 21(6), 867–875 (1998).  https://doi.org/10.2514/2.4350 CrossRefGoogle Scholar
  8. 8.
    Castellini, F.: Multidisciplinary design optimization for expendable launch vehicles. Ph.D. thesis, Politecnico Di Milano, Milan (2012)Google Scholar
  9. 9.
    Daum, A.: Problemlösungen für die Leistungsoptimierung wiederverwendbarer atmosphärengestützter Orbittransfersysteme. Ph.D. thesis, Technische Universität Berlin, Berlin (1991)Google Scholar
  10. 10.
    Dees, P.D., Zwack, M.R., Steffens, M., Edwards, S.: Augmenting conceptual design trajectory tradespace exporation with graph theory. In: AIAA SPACE Forum (2016).  https://doi.org/10.2514/6.2016-5650
  11. 11.
    Dees, P.D., Zwack, M.R., Steffens, M., Edwards, S., Diaz, M.J., Holt, J.B.: An expert system-driven method for parametric trajectory optimization during conceptual design. In: AIAA SPACE Conference and Exposition (2015).  https://doi.org/10.2514/6.2015-4486
  12. 12.
    Gath, P.F., Well, K.H., Mehlem, K.: Initial guess generation for rocket ascent trajectory optimization using indirect methods. J. Spacecr. Rockets 39(4), 515–521 (2002).  https://doi.org/10.2514/2.3864 CrossRefGoogle Scholar
  13. 13.
    Hoak, D.E., Finck, R.D.: USAF stability and control DATCOM (1960, revised 1972)Google Scholar
  14. 14.
    Hull, D.G.: Conversion of optimal control problems into parameter optimization problems. J. Guid. Control Dyn. 20(1), 57–60 (1997).  https://doi.org/10.2514/2.4033 CrossRefzbMATHGoogle Scholar
  15. 15.
    Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007).  https://doi.org/10.1109/MCSE.2007.55 CrossRefGoogle Scholar
  16. 16.
    Jodei, J., Ebrahimi, M., Roshanian, J.: An automated approach to multidisciplinary system design optimization of small solid propellant launch vehicles. In: 1st International Symposium on Systems and Control in Aerospace and Astronautics, pp. 1401–1406 (2006).  https://doi.org/10.1109/ISSCAA.2006.1627501
  17. 17.
    Martí, R., Reinelt, G.: The Linear Ordering Problem: Exact and Heuristic Methods in Combinatorial Optimization, Applied Mathematical Sciences, vol. 175. Springer, Berlin (2011).  https://doi.org/10.1007/978-3-642-16729-4
  18. 18.
    Pan, B., Lu, P.: Improvements to optimal launch ascent guidance. In: AIAA Guidance, Navigation, and Control Conference (2010).  https://doi.org/10.2514/6.2010-8174
  19. 19.
    Perkins, F.M.: Flight mechanics of ascending satellite vehicles. J. Jet Propul. 26(5), 352–358 (1956).  https://doi.org/10.2514/8.7029 CrossRefGoogle Scholar
  20. 20.
    Pontani, M.: Particle swarm optimization of ascent trajectories of multistage launch vehicles. Acta Astronaut. 94(2), 852–864 (2014).  https://doi.org/10.1016/j.actaastro.2013.09.013 CrossRefGoogle Scholar
  21. 21.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  22. 22.
    Rao, A.V.: A survey of numerical methods for optimal control. Adv. Astonaut. Sci. 135, 497–528 (2010)Google Scholar
  23. 23.
    Roshanian, J., Jodei, J., Mirshams, M., Ebrahimi, R., Mirzaee, M.: Multi-level of fidelity multi-disciplinary design optimization of small, solid-propellant launch vehicles. Trans. Jpn. Soc. Aeronaut. Space Sci. 53(180), 73–83 (2010).  https://doi.org/10.2322/tjsass.53.73 CrossRefGoogle Scholar
  24. 24.
    Sanderson, C., Curtin, R.: Armadillo: a template-based C++ library for linear algebra. J. Open Source Softw. 1(2), 26 (2016).  https://doi.org/10.21105/joss.00026 CrossRefGoogle Scholar
  25. 25.
    Sikharulidze, U.G.: Aircraft ballistics. Science, Moskow (1982). (In Russian) Google Scholar
  26. 26.
    Snecma.: Space propulsion: HM7B. Press release (2011)Google Scholar
  27. 27.
    Société européenne de propulsion.: Ariane 4: First stage propulsion system. Press release (1995)Google Scholar
  28. 28.
    Société européenne de propulsion.: Ariane 4: Second stage propulsion system. Press release (1995)Google Scholar
  29. 29.
    Steffens, M., Edwards, S., Mavris, D.N.: Capturing the global feasible design space for launch vehicle ascent trajectories. In: AIAA Atmospheric Flight Mechanics Conference (2015).  https://doi.org/10.2514/6.2015-1910
  30. 30.
    Wade, M.: Ariane 40. http://www.astronautix.com/a/ariane40.html. Accessed 5 June 2018
  31. 31.
    Walter, U.: Astronautics: The Physics of Space Flight. Physics textbook, 2nd edn. Wiley-VCH, Weinheim (2012)Google Scholar
  32. 32.
    Zwack, M.R., Dees, P.D.: Improvement of automated POST case success rate using support vector machines. In: AIAA SPACE and Astronautics Forum and Exposition (2017).  https://doi.org/10.2514/6.2017-5129

Copyright information

© CEAS 2019

Authors and Affiliations

  1. 1.German Aerospace Center (DLR), Institute of Space SystemsBremenGermany

Personalised recommendations