An academic approach to the multidisciplinary development of liquid-oxygen turbopumps for space applications

  • Julian D. PauwEmail author
  • Lucrezia Veggi
  • Oskar J. Haidn
  • Christian Wagner
  • Thomas Thümmel
  • Daniel J. Rixen
  • Christoph Ager
  • Andy Wirtz
  • Alexander Popp
  • Wolfgang A. Wall
  • Bernd Wagner
Original Paper


Since 2015, the Technical University of Munich and the German Aerospace Center have intensified their research on liquid-oxygen turbopumps for space propulsion applications in a joined project. Together, they concentrate on the special challenges concerning the design, construction and operation of parts of turbopumps, as well as the development and validation of tools to interpret and predict the aforementioned. This is accompanied by experimental works on the level of components of the pump, the bearing unit and seals. Alongside this, numerical tools are used which have been developed both commercially and at the Technical University of Munich. The research combines the expertise of several institutes in the fields of space propulsion, applied mechanics, rotordynamics and numerical mechanics in a multidisciplinary approach. The incorporation of student and doctoral theses allows for the investigation of the components of liquid-oxygen turbopumps in a very wide variety. High emphasis is put on the interaction between the turbopump subsystems. The present paper presents the work on each subsystem and the links between them.


Turbopump Liquid rocket engine Liquid oxygen Rotordynamics Fluid–structure interaction Secondary flow systems 



This project is supported by the Ludwig Bölkow Campus, funded by the Bavarian government. The authors greatly appreciate the good cooperation with the consortium partners.


  1. 1.
    Keller, R.B. Jr., Jakobsen, J.K.: Liquid rocket engine turbopump inducers. NASA SP-8052. NASA Space Vehicle Design Criteria (Chemical Propulsion). National Aeronautics and Space Administration, Lewis Research Center, Design Criteria Office, Cleveland, OH, USA (1971). Available from NTRSGoogle Scholar
  2. 2.
    Bissel, W.R., Douglass, H.W., Sobin, A.J.: Turbopump systems for liquid rocket engines. NASA SP-8107. NASA Space Vehicle Design Criteria (Chemical Propulsion). National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH, USA (1974). Available from NTRSGoogle Scholar
  3. 3.
    Veggi, L., Pauw, J.D., Wagner, B., Haidn, O.J.: A study on the design of LOx turbopump inducers. In: 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC), Maui, HI, USA (2017)Google Scholar
  4. 4.
    Aungier, R.H.: Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis. ASME, New York (2006)CrossRefGoogle Scholar
  5. 5.
    Ehrlich, D.A., Schwille, J., Welle, R.P., Murdock, J.W., Hardy, B. S.: A water test facility for liquid rocket engine turbopump cavitation testing. In: Proceedings of the 7th International Symposium on Cavitation CAV2009, Ann Arbor, Michigan, USA (2009)Google Scholar
  6. 6.
    Rapposelli, E., Cervone, A., Bramanti, C., d’Agostino, L.: A new cavitation test facility at centrospazio. In: 4th International Conference on Launcher Technology. Space Launcher Liquid Propulsion, Liège, Belgium (2002)Google Scholar
  7. 7.
    Pace, G., Pasini, A., Torre, L., Valentini, D., d’Agostino, L.: The cavitating pump rotordynamic test facility at ALTA S.p.A.: upgraded capabilities of a unique test rig. In: Space Propulsion, Bordeaux, France (2012)Google Scholar
  8. 8.
    Rapposelli, E., Cervone, A., d’Agostino, L.: A new cavitating pump rotordynamic test facility. AIAA 2002–4285. In: 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, IN, USA (2002)Google Scholar
  9. 9.
    Pauw, J.D., Veggi, L., Wagner, B., Mondal, J., Klotz, M., Haidn, O.J.: Design procedure of a turbopump test bench. In: 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC), Maui, HI, USA (2017)Google Scholar
  10. 10.
    Gülich, J.F.: Centrifugal Pumps. Springer, Berlin (2010)CrossRefGoogle Scholar
  11. 11.
    Brennen, C.E.: Hydrodynamics of Pumps. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  12. 12.
    Kenneth, E., Nichols, P.E.: How to select turbomachinery for your application. Accessed 14 Sept 2016
  13. 13.
    Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford Engineering Science Series, vol. 44. Oxford University Press, New York (1995)Google Scholar
  14. 14.
    Ehrlich, D.A., Murdock, J.W.: A dimensionless scaling parameter for thermal effects on cavitation in turbopump inducers. J. Fluids Eng. 137(4), 41103 (2015)CrossRefGoogle Scholar
  15. 15.
    Muller, S., van de Wyer, N., Souverein, L.: POGO unstationnary cavitation modelling of space rocket turbopumps based on water tests. In: SpacePropulsion, Rome, Italy (2016)Google Scholar
  16. 16.
    Carter, T.A. Jr., Crusan, C.R., Thodal, F.: Comparison and correlation of centrifugal pump cavitation. Adv. Cryogenic Eng. 1960(4), 255–263Google Scholar
  17. 17.
    Cervone, A., Bramanti, C., Rapposelli, E., d’Agostino, L.: Cavitation experiments on turbopump inducers and hydrofoils at alta/centrospazio: overview and future activities. In: ASME 2005 Fluids Engineering Division Summer Meeting, Houston, TX, USA, pp. 1247–1256 (2005)Google Scholar
  18. 18.
    Cervone, A., Bramanti, C., Rapposelli, E., d’Agostino, L.: Thermal cavitation experiments on a NACA 0015 hydrofoil. J. Fluids Eng. 128, 326–331 (2006)CrossRefGoogle Scholar
  19. 19.
    Childs, D.: Transient rotordynamic analysis for the space-shuttle main engine high-pressure oxygen turbopump. In: 10th Propulsion Conference, San Diego, CA, USA (1974)Google Scholar
  20. 20.
    Gasch, R., Nordmann, R., Pfützner, H.: Rotordynamik. Springer, Berlin (2002)CrossRefGoogle Scholar
  21. 21.
    Harris, T.A.: Rolling Bearing Analysis, 3rd edn. Wiley, New York (1991)Google Scholar
  22. 22.
    Wagner, C., Krinner, A., Thümmel, T., Rixen, D.: Full dynamic ball bearing model with elastic outer ring for high speed applications. Lubricants 5(2), 17 (2017)CrossRefGoogle Scholar
  23. 23.
    Muszyńska, A.: Rotordynamics. Mechanical Engineering, vol. 188. Taylor & Francis, Boca Raton (2005)CrossRefGoogle Scholar
  24. 24.
    Wagner, C., Tsunoda, W., Berninger, T., Thümmel, T., Rixen, D.: Instability prediction and rotordynamic with seals: simulations based on the bulk-flow theory and experimental measurements. In: Proceedings of the XVII International Symposium on Dynamic Problems of Mechanics, Sao Sebastiao, Brazil (2017)Google Scholar
  25. 25.
    Wagner, C., Tsunoda, W., Matsushita, O., Berninger, T., Thümmel, T., Rixen, D.: Prediction of instability in rotor-seal systems using forward whirl magnetic bearing excitation. Technische Mechanik 37(2–5), 358–366 (2017)Google Scholar
  26. 26.
    Vuong, A.-T., Yoshihara, L., Wall, W.A.: A general approach for modeling interacting flow through porous media under finite deformations. Comput. Methods Appl. Mech. Eng. 283, 1240–1259 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Schott, B., Wall, W.A.: A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 276, 233–265 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A.: CutFEM. Discretizing geometry and partial differential equations. Int. J. Numer. Meth. Engng. 104(7), 472–501 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ager, C., Schott, B., Winter, M., Wall, W.A.: A Nitsche-based cut finite element method for the coupling of incompressible fluid flow with poroelasticity, arXiv preprint arXiv:1808.05900 (2018)
  30. 30.
    Hüeber, S., Stadler, G., Wohlmuth, B.I.: A primal-dual active set algorithm for three-dimensional contact problems with coulomb friction. SIAM J. Sci. Comput. 30(2), 572–596 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Popp, A., Gitterle, M., Gee, M.W., Wall, W.A.: A dual mortar approach for 3D finite deformation contact with consistent linearization. Int. J. Numer. Meth. Engng. 83(11), 1428–1465 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Ager, C., Schott, B., Vuong, A.-T., Popp, A., Wall, W.A.: A consistent approach for fluid-structure-contact interaction based on a porous flow model for rough surface contact, arXiv preprint arXiv:1809.04004 (2018)
  33. 33.
    Wagner, B., Stampfl, A., Beck, P., Veggi, L., Pauw, J.D., Kitsche, W.: Untersuchungen zu Sekundärsystemen in Turbopumpen für Flüssigkeitsraketenantriebe. In: Deutscher Luft- und Raumfahrtkongess, Braunschweig, Germany (2016)Google Scholar
  34. 34.
    Beck, P.A., Wagner, B., Haidn, O.: The influence of secondary flow in the thrust acting on the axis of a radial LOx pumps. In: 12th European Conference on Turbomachinery Fluid dynamics & Thermodynamics, Stockholm, Sweden (2017)Google Scholar
  35. 35.
    Wagner, B., Veggi, L., Pauw, J.D.: Assessment of performance variation on the axial and radial forces in turbopump configurations for liquid rocket engines. In: 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC), Maui, HI, USA (2017)Google Scholar
  36. 36.
    Maier, S., Wagner, B., Veggi, L., Pauw, J.D., Beck, P.A.: Analytical and numerical assessment of axial thrust balancing systems in liquid rocket engine LOx turbopumps. In: 7th European Conference for Aeronautics and Space Sciences, Milano, Italy (2017)Google Scholar
  37. 37.
    Bartel, D.: Simulation von Tribosystemen. Grundlagen und Anwendungen. Vieweg + Teubner Verlag/GWV Fachverlage GmbH, Wiesbaden (2010)CrossRefGoogle Scholar

Copyright information

© CEAS 2018

Authors and Affiliations

  • Julian D. Pauw
    • 1
    Email author
  • Lucrezia Veggi
    • 1
  • Oskar J. Haidn
    • 1
  • Christian Wagner
    • 2
  • Thomas Thümmel
    • 2
  • Daniel J. Rixen
    • 2
  • Christoph Ager
    • 3
  • Andy Wirtz
    • 3
  • Alexander Popp
    • 3
  • Wolfgang A. Wall
    • 3
  • Bernd Wagner
    • 4
  1. 1.Division Space Propulsion, Chair of Turbomachinery and Flight PropulsionTechnical University of MunichGarchingGermany
  2. 2.Chair of Applied MechanicsTechnical University of MunichGarchingGermany
  3. 3.Institute for Computational MechanicsTechnical University of MunichGarchingGermany
  4. 4.Institute of Space Propulsion, LampoldshausenGerman Aerospace Center (DLR)HardthausenGermany

Personalised recommendations