CEAS Space Journal

, Volume 10, Issue 3, pp 307–323 | Cite as

Project-based learning applied to spacecraft power systems: a long-term engineering and educational program at UPM University

  • Santiago Pindado
  • Javier Cubas
  • Elena Roibás-Millán
  • Félix Sorribes-Palmer
Original Paper


The IDR/UPM Institute is the research center responsible for the Master in Space Systems (MUSE) of Universidad Politécnica de Madrid (UPM). This is a 2-year (120 ECTS) master’s degree focused on space technology. The UPMSat-2 satellite program has become an excellent educational framework in which the academic contents of the master are trained through project-based learning and following a multidisciplinary approach. In the present work, the educational projects developed and carried out in relation to spacecraft power systems at the IDR/UPM Institute are described. These projects are currently being developed in the framework represented by the aforementioned MUSE master’s program and UPMSat-2.


Spacecraft power systems MUSE UPMSat-2 IDR/UPM Project-based learning 



The authors are indebted to the all IDR/UPM Institute staff for their constant support. Besides, the authors would like to express their gratitude to Javier Piqueras, Alvaro Alonso, Alejandro García, Alberto Núñez, María Lizana, Borja Torres, Jorge García, Jaime García and Juan Antonio Zaragoza, who being students of the MUSE showed an outstanding commitment to the projects related to space engineering power systems at the IDR/UPM Institute. Additionally, the authors are also indebted to the Bachelor’s Degree in Aerospace students Angel Porras and Daniel Alfonso, and the Lab Technician Fernando Gallardo, for their kind help in relation to the UPMSat-2 battery maintenance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Da-Riva, I., Pereira, E.A.: A regular perturbation approach to surface tension driven flows. Acta Astronaut. 9, 217–224 (1982)CrossRefzbMATHGoogle Scholar
  2. 2.
    Da-Riva, I., Ruesga, J.M.: Fluid-physics-module experiments. In: ESA Spec. Publ. ESA SP-114, pp. 265–275 (1976)Google Scholar
  3. 3.
    Meseguer, J.: The breaking of axisymmetric slender liquid bridges. J. Fluid Mech. 130, 123–151 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Meseguer, J.: Stability of slender, axisymmetric liquid bridges between unequal disks. J. Cristal Growth 67, 141–143 (1984)CrossRefGoogle Scholar
  5. 5.
    Meseguer, J., Sanz, A.: Numerical and experimental study of the dynamics of axisymmetric slender liquid bridges. J. Fluid Mech. 153, 83–101 (1985)CrossRefGoogle Scholar
  6. 6.
    Meseguer, J., Sanz, A., Lopez, J.: Liquid bridge breakages aboard spacelab-D1. J. Cryst. Growth 78, 325–334 (1986)CrossRefGoogle Scholar
  7. 7.
    Da-Riva, I.: Stability of liquid bridges. In: Napolitano, L.G. (ed.) Applications of Space Developments. Proceedings of the XXXI Int. Astronautical Congress, Tokio, Japan, pp. 69–80. Pregamon Press Ltd., Oxford, Great Britain (1981)Google Scholar
  8. 8.
    Slobozhanin, L.A., Shevtsova, V.M., Alexander, J.I.D., Meseguer, J., Montanero, J.M.: Stability of liquid bridges between coaxial equidimensional disks to axisymmetric finite perturbations: a review. Microgravity Sci. Technol. 24, 65–77 (2012). CrossRefGoogle Scholar
  9. 9.
    Da-Riva, I., Meseguer, J., Martínez, I., Stroom, C.: Spacecraft thermal control design data. In: ESA Spacecraft Thermal and Environment Control Systems (SEE N 79-31266 22-18) (1978)Google Scholar
  10. 10.
    Sanz-Andrés, A., Meseguer, J.: El satélite español UPM-Sat 1. Mundo Científico 169, 560–567 (1996)Google Scholar
  11. 11.
    Meseguer, J., Sanz-Andrés, A.: El satélite UPM-Sat 1. Inf. a la Acad. Ing. España. 1, (1998)Google Scholar
  12. 12.
    Sanz-Andrés, A., Meseguer, J., Perales, J.M., Santiago-Prowald, J.: A small platform for astrophysical research based on the UPM-Sat 1 satellite of the Universidad Politécnica de Madrid. Adv. Space Res. 31, 375–380 (2003)CrossRefGoogle Scholar
  13. 13.
    Swartwout, M., Jayne, C.: University-class spacecraft by the numbers: success, failure, debris (But Mostly Success). In: 30th AIAA/USU Conference on Small Satellites, Logan, UT, USA (2016)Google Scholar
  14. 14.
    Sanz-Andrés, A., Rodríguez-De-Francisco, P., Santiago-Prowald, J.: The Experiment CPLM (Comportamiento De Puentes Líquidos En Microgravedad) On Board MINISAT 01. In: Science with Minisat 01, pp. 97–121. Springer (2001)Google Scholar
  15. 15.
    Thomas, N., Keller, H.U., Arijs, E., Barbieri, C., Grande, M., Lamy, P., Angrilli, F.: OSIRIS—the optical, spectroscopic and infrared remote imaging system for the Rosetta orbiter. Adv. Space Res. 21, 1505–1515 (1998)CrossRefGoogle Scholar
  16. 16.
    Pérez-Grande, I., Sanz-Andrés, A., Bezdenejnykh, N., Barthol, P.: Transient thermal analysis during the ascent phase of a balloon-borne payload. Comparison with SUNRISE test flight measurements. Appl. Therm. Eng. 29, 1507–1513 (2009)CrossRefGoogle Scholar
  17. 17.
    Barthol, P., Gandorfer, A., Solanki, S.K., Schüssler, M., Chares, B., Curdt, W., Heerlein, K.: The sunrise mission. Sol. Phys. 68, 1–34 (2011)CrossRefGoogle Scholar
  18. 18.
    Neefs, E., Vandaele, A.C., Drummond, R., Thomas, I.R., Berkenbosch, S., Clairquin, R., Delanoye, S., Ristic, B., Maes, J., Bonnewijn, S., Pieck, G., Equeter, E., Depiesse, C., Daerden, F., Van Ransbeeck, E., Nevejans, D., Rodriguez-Gómez, J., López-Moreno, J.-J., Sanz, R., Morales, R., Candini, G.P., Pastor-Morales, M.C., del Moral, B.A., Jeronimo-Zafra, J.-M., Gómez-López, J.M., Alonso-Rodrigo, G., Pérez-Grande, I., Cubas, J., Gomez-Sanjuan, A.M., Navarro-Medina, F., Thibert, T., Patel, M.R., Bellucci, G., De Vos, L., Lesschaeve, S., Van Vooren, N., Moelans, W., Aballea, L., Glorieux, S., Baeke, A., Kendall, D., Neef, J.De, Soenen, A., Puech, P.-Y., Ward, J., Jamoye, J.-F., Diez, D., Vicario-Arroyo, A., Jankowski, M.: NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 1—design, manufacturing and testing of the infrared channels. Appl. Opt. 54, 8494–8520 (2015)CrossRefGoogle Scholar
  19. 19.
    Patel, M.R., Antoine, P., Mason, J., Leese, M., Hathi, B., Stevens, A.H., Dawson, D., Gow, J., Ringrose, T., Holmes, J., Lewis, S.R., Beghuin, D., van Donink, P., Ligot, R., Dewandel, J.-L., Hu, D., Bates, D., Cole, R., Drummond, R., Thomas, I.R., Depiesse, C., Neefs, E., Equeter, E., Ristic, B., Berkenbosch, S., Bolsée, D., Willame, Y., Vandaele, A.C., Lesschaeve, S., De Vos, L., Van Vooren, N., Thibert, T., Mazy, E., Rodriguez-Gomez, J., Morales, R., Candini, G.P., Pastor-Morales, M.C., Sanz, R., del Moral, B.A., Jeronimo-Zafra, J.-M., Gómez-López, J.M., Alonso-Rodrigo, G., Pérez-Grande, I., Cubas, J., Gomez-Sanjuan, A.M., Navarro-Medina, F., BenMoussa, A., Giordanengo, B., Gissot, S., Bellucci, G., Lopez-Moreno, J.J.: NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 2—design, manufacturing, and testing of the ultraviolet and visible channel. Appl. Opt. 56, 2771–2782 (2017)CrossRefGoogle Scholar
  20. 20.
    Fernández Rico, G., Perez-Grande, I.: Diseño térmico preliminar del Instrumento PHI de Solar Orbiter. In: Actas del VII Congreso Nacional de Ingeniería Termodinámica—CNIT7, Bilbao, España (2011)Google Scholar
  21. 21.
    Pindado Carrion, S., Roibás-Millán, E., Cubas Cano, J., García, A., Sanz Andres, A.P., Franchini, S., Pérez Grande, M.I., Alonso, G., Pérez-Álvarez, J., Sorribes-Palmer, F., Fernandez-López, A., Ogueta-Gutierrez, M., Torralbo, I., Zamorano, J., Puente Alfaro, J.A. de la, Alonso, A., Garrido, J.: The UPMSat-2 Satellite: an academic project within aerospace engineering education. In: Athens: ATINER’S Conference Paper Series, No: ENGEDU2017-2333, pp. 1–28. Athens Institute for Education and Research, ATINER, Athens, Greece (2017)Google Scholar
  22. 22.
    Cubas, J., Farrahi, A., Pindado, S.: Magnetic attitude control for satellites in polar or sun-synchronous orbits. J. Guid. Control Dyn. 38, 1947–1958 (2015). CrossRefGoogle Scholar
  23. 23.
    Pindado, S., Sanz, A., Sebastian, F., Perez-grande, I., Alonso, G., Perez-Alvarez, J., Sorribes-Palmer, F., Cubas, J., Garcia, A., Roibas, E., Fernandez, A.: Master in space systems, an advanced Master’ s Degree in Space Engineering. In: ATINER’S Conference Paper Series, No: ENGEDU2016-1953, pp. 1–16. Athens, Greece (2016)Google Scholar
  24. 24.
    Hotaling, N., Fasse, B.B., Bost, L.F., Hermann, C.D., Foresta, C.R.: A quantitative analysis of the effects of a multidisciplinary engineering capstone design course. J. Eng. Educ. 101, 630–656 (2012). CrossRefGoogle Scholar
  25. 25.
    Jazebizadeh, H., Tabeshian, M., Taheran Vernoosfaderani, M.: Applying the system engineering approach to devise a master’s degree program in space technology in developing countries. Acta Astronaut. 67, 1323–1332 (2010). CrossRefGoogle Scholar
  26. 26.
    Brodeur, D.R., Young, P.W., Blair, K.B.: Problem-Based Learning in Aerospace Engineering Education. In: Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition, Montreal, Canada (2002)Google Scholar
  27. 27.
    Larson, W.J., Wertz, J.R. (eds.): Space mission analysis and design, 3rd edn. Microcosm Press/Kluwer Academic Publishers (1999)Google Scholar
  28. 28.
    Brown, C.D. (ed.): Elements of spacecraft design. American Institute of Aeronautics and Astronautics, Inc. (2002)Google Scholar
  29. 29.
    Fortescue, P., Stark, J., Swinerd, G. (eds.): Spacecraft systems engineering. Wiley (2003)Google Scholar
  30. 30.
    Cubas, J., Pindado, S., Victoria, M.: On the analytical approach for modeling photovoltaic systems behavior. J. Power Sources 247, 467–474 (2014). CrossRefGoogle Scholar
  31. 31.
    Cubas, J., Pindado, S., de Manuel, C.: Explicit expressions for solar panel equivalent circuit parameters based on analytical formulation and the lambert W-function. Energies 7, 4098–4115 (2014). CrossRefGoogle Scholar
  32. 32.
    Cubas, J., Pindado, S., Farrahi, A.: New method for analytical photovoltaic parameter extraction. In: Proceedings of the 2nd International Conference on Renewable Energy Research and Applications, ICRERA 2013, pp. 873–877. IEEE Press, Madrid (2013)Google Scholar
  33. 33.
    Cubas, J., Pindado, S., De Manuel, C.: New method for analytical photovoltaic parameters identification: meeting manufacturer’s datasheet for different ambient conditions. In: Oral, A.Y., Bahsi, Z.B., Ozer, M. (eds.) International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013), Springer Proceedings in Physics 155, pp. 161–169. Springer International Publishing, Antalya (2014)CrossRefGoogle Scholar
  34. 34.
    Svelto, F., Flores, C., Caon, A., Contini, R., Rossi, E.: The Italian activities on GaAs solar cells for space applications: achieved results and future programmes. Sol. Energy Mater. Sol. Cells 35, 99–104 (1994). CrossRefGoogle Scholar
  35. 35.
    Cubas, J., Sorribes-Palmer, F., Pindado, S.: The use of STK as educational tool in the MUSE (Master in Space Systems), an Advanced Master’s Degree in Space. In: AGI’s 2nd International Users Conference: Ciao Roma!. 6–18 November, Rome, Italy (2016)Google Scholar
  36. 36.
    Barkmeyer, M., Burger, W., Düver, F., Finkenwerder, E., Fries, D., Fuggmann, S., Heizmann, S., Herr, C., Rogge, N.H., Joos, H., Jüstel, P., Keppler, J., Keuper, R., Kunze, A., Lay, J., Le, H.A., Leinbach, F., Mosmann, V., Müller, F., Nizenkov, P., Ohno, D., Pfeifle, A., Salib, M., Scherrmann, M., Schmidt, M., Stierle, R., Teichmann, L., Torgau, T., Wischert, D.: Mission Design of a Two-Person Mars Flyby by 2018 (2014)Google Scholar
  37. 37.
    Scholz, T., Asma, C.O., Aruliah, A.: Recommended Set of Models and Input Parameters for the Simulations of Orbital Dynamics of the Qb50 Cubesats. In: 5th ICATT. International Conference on Astrodynamics Tools and Techniques. ESTEC/ESA, The Netherlands, 29 May–1 June 2012, pp. 1–8 (2012)Google Scholar
  38. 38.
    Askarzadeh, A., Rezazadeh, A.: Parameter identification for solar cell models using harmony search-based algorithms. Sol. Energy 86, 3241–3249 (2012). CrossRefGoogle Scholar
  39. 39.
    Cubas, J., Pindado, S.: New method for analytical photovoltaic parameters identification: Meeting manufacturer’s datasheet for different ambient conditions. In: Springer Proceedings in Physics (2014)Google Scholar
  40. 40.
    Pindado, S., Cubas, J., Sorribes-Palmer, F.: On the analytical approach to present engineering problems: photovoltaic systems behavior, wind speed sensors performance, and high-speed train pressure wave effects in tunnels. Math. Probl. Eng. 2015, 1–17 (2015). CrossRefGoogle Scholar
  41. 41.
    Cubas, J., Pindado, S., Sanz-Andrés, Á.: Accurate simulation of MPPT methods performance when applied to commercial photovoltaic panels. Sci. World J. 2015, 1–16 (2015). CrossRefGoogle Scholar
  42. 42.
    Pindado, S., Cubas, J.: Simple mathematical approach to solar cell/panel behavior based on datasheet information. Renew. Energy 103, 729–738 (2017). CrossRefGoogle Scholar
  43. 43.
    Cubas, J., Pindado, S., Sorribes-Palmer, F.: Analytical calculation of photovoltaic systems maximum power point (MPP) based on the operation point. Appl. Sci. (2017). Google Scholar
  44. 44.
    Roibás-Millán, E., Alonso-Moragón, A., Jiménez-Mateos, A., Pindado, S.: Testing solar panels for small-size satellites: the UPMSAT-2 mission. Meas. Sci. Technol. 28, 115801 (2017)CrossRefGoogle Scholar

Copyright information

© CEAS 2018

Authors and Affiliations

  1. 1.Instituto Universitario de Microgravedad “Ignacio Da Riva” (IDR/UPM)Universidad Politécnica de Madrid, ETSI AeronáuticosMadridSpain

Personalised recommendations