Skip to main content

Advertisement

Log in

Project-based learning applied to spacecraft power systems: a long-term engineering and educational program at UPM University

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

The IDR/UPM Institute is the research center responsible for the Master in Space Systems (MUSE) of Universidad Politécnica de Madrid (UPM). This is a 2-year (120 ECTS) master’s degree focused on space technology. The UPMSat-2 satellite program has become an excellent educational framework in which the academic contents of the master are trained through project-based learning and following a multidisciplinary approach. In the present work, the educational projects developed and carried out in relation to spacecraft power systems at the IDR/UPM Institute are described. These projects are currently being developed in the framework represented by the aforementioned MUSE master’s program and UPMSat-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Máster Universitario en Sistemas Espaciales. http://muse.idr.upm.es/

  2. The IDR/UPM Institute (Instituto Universitario de Microgravedad “Ignacio Da Riva”) was established as a research institution inside Universidad Politécnica de Madrid in 1998.

  3. Also known as UPM-Sat 1.

  4. In fact, the UPMSat-1 mission is not mentioned in the list provided in the work by Swartwout & Jayne. Nevertheless, once informed by IDR/UPM staff in April 2017, Prof. Swartwout committed himself to include the UPMSat-1 mission in future works.

  5. Nadir and Occultation for MArs Discovery.

  6. Solar Orbiter Polarimetric and Helioseismic Imager.

  7. Energetic Particle Detector.

  8. Sistemas de Tiempo Real y Arquitectura de Servicios Telemáticos (Real-time Systems and Telematic Services Architecture). http://www.dit.upm.es/~str/

  9. Electronics Box.

  10. National Institute of Aerospace Technology "Esteban Terradas" (INTA). Spanish National Aerospace Research Agency.

  11. European Credit Transfer and Accumulation System.

  12. This document describes the electrical pairing between the different electrical pins from the on-board hardware connectors of the satellite.

References

  1. Da-Riva, I., Pereira, E.A.: A regular perturbation approach to surface tension driven flows. Acta Astronaut. 9, 217–224 (1982)

    Article  MATH  Google Scholar 

  2. Da-Riva, I., Ruesga, J.M.: Fluid-physics-module experiments. In: ESA Spec. Publ. ESA SP-114, pp. 265–275 (1976)

  3. Meseguer, J.: The breaking of axisymmetric slender liquid bridges. J. Fluid Mech. 130, 123–151 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Meseguer, J.: Stability of slender, axisymmetric liquid bridges between unequal disks. J. Cristal Growth 67, 141–143 (1984)

    Article  Google Scholar 

  5. Meseguer, J., Sanz, A.: Numerical and experimental study of the dynamics of axisymmetric slender liquid bridges. J. Fluid Mech. 153, 83–101 (1985)

    Article  Google Scholar 

  6. Meseguer, J., Sanz, A., Lopez, J.: Liquid bridge breakages aboard spacelab-D1. J. Cryst. Growth 78, 325–334 (1986)

    Article  Google Scholar 

  7. Da-Riva, I.: Stability of liquid bridges. In: Napolitano, L.G. (ed.) Applications of Space Developments. Proceedings of the XXXI Int. Astronautical Congress, Tokio, Japan, pp. 69–80. Pregamon Press Ltd., Oxford, Great Britain (1981)

  8. Slobozhanin, L.A., Shevtsova, V.M., Alexander, J.I.D., Meseguer, J., Montanero, J.M.: Stability of liquid bridges between coaxial equidimensional disks to axisymmetric finite perturbations: a review. Microgravity Sci. Technol. 24, 65–77 (2012). https://doi.org/10.1007/s12217-011-9290-5

    Article  Google Scholar 

  9. Da-Riva, I., Meseguer, J., Martínez, I., Stroom, C.: Spacecraft thermal control design data. In: ESA Spacecraft Thermal and Environment Control Systems (SEE N 79-31266 22-18) (1978)

  10. Sanz-Andrés, A., Meseguer, J.: El satélite español UPM-Sat 1. Mundo Científico 169, 560–567 (1996)

    Google Scholar 

  11. Meseguer, J., Sanz-Andrés, A.: El satélite UPM-Sat 1. Inf. a la Acad. Ing. España. 1, (1998)

  12. Sanz-Andrés, A., Meseguer, J., Perales, J.M., Santiago-Prowald, J.: A small platform for astrophysical research based on the UPM-Sat 1 satellite of the Universidad Politécnica de Madrid. Adv. Space Res. 31, 375–380 (2003)

    Article  Google Scholar 

  13. Swartwout, M., Jayne, C.: University-class spacecraft by the numbers: success, failure, debris (But Mostly Success). In: 30th AIAA/USU Conference on Small Satellites, Logan, UT, USA (2016)

  14. Sanz-Andrés, A., Rodríguez-De-Francisco, P., Santiago-Prowald, J.: The Experiment CPLM (Comportamiento De Puentes Líquidos En Microgravedad) On Board MINISAT 01. In: Science with Minisat 01, pp. 97–121. Springer (2001)

  15. Thomas, N., Keller, H.U., Arijs, E., Barbieri, C., Grande, M., Lamy, P., Angrilli, F.: OSIRIS—the optical, spectroscopic and infrared remote imaging system for the Rosetta orbiter. Adv. Space Res. 21, 1505–1515 (1998)

    Article  Google Scholar 

  16. Pérez-Grande, I., Sanz-Andrés, A., Bezdenejnykh, N., Barthol, P.: Transient thermal analysis during the ascent phase of a balloon-borne payload. Comparison with SUNRISE test flight measurements. Appl. Therm. Eng. 29, 1507–1513 (2009)

    Article  Google Scholar 

  17. Barthol, P., Gandorfer, A., Solanki, S.K., Schüssler, M., Chares, B., Curdt, W., Heerlein, K.: The sunrise mission. Sol. Phys. 68, 1–34 (2011)

    Article  Google Scholar 

  18. Neefs, E., Vandaele, A.C., Drummond, R., Thomas, I.R., Berkenbosch, S., Clairquin, R., Delanoye, S., Ristic, B., Maes, J., Bonnewijn, S., Pieck, G., Equeter, E., Depiesse, C., Daerden, F., Van Ransbeeck, E., Nevejans, D., Rodriguez-Gómez, J., López-Moreno, J.-J., Sanz, R., Morales, R., Candini, G.P., Pastor-Morales, M.C., del Moral, B.A., Jeronimo-Zafra, J.-M., Gómez-López, J.M., Alonso-Rodrigo, G., Pérez-Grande, I., Cubas, J., Gomez-Sanjuan, A.M., Navarro-Medina, F., Thibert, T., Patel, M.R., Bellucci, G., De Vos, L., Lesschaeve, S., Van Vooren, N., Moelans, W., Aballea, L., Glorieux, S., Baeke, A., Kendall, D., Neef, J.De, Soenen, A., Puech, P.-Y., Ward, J., Jamoye, J.-F., Diez, D., Vicario-Arroyo, A., Jankowski, M.: NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 1—design, manufacturing and testing of the infrared channels. Appl. Opt. 54, 8494–8520 (2015)

    Article  Google Scholar 

  19. Patel, M.R., Antoine, P., Mason, J., Leese, M., Hathi, B., Stevens, A.H., Dawson, D., Gow, J., Ringrose, T., Holmes, J., Lewis, S.R., Beghuin, D., van Donink, P., Ligot, R., Dewandel, J.-L., Hu, D., Bates, D., Cole, R., Drummond, R., Thomas, I.R., Depiesse, C., Neefs, E., Equeter, E., Ristic, B., Berkenbosch, S., Bolsée, D., Willame, Y., Vandaele, A.C., Lesschaeve, S., De Vos, L., Van Vooren, N., Thibert, T., Mazy, E., Rodriguez-Gomez, J., Morales, R., Candini, G.P., Pastor-Morales, M.C., Sanz, R., del Moral, B.A., Jeronimo-Zafra, J.-M., Gómez-López, J.M., Alonso-Rodrigo, G., Pérez-Grande, I., Cubas, J., Gomez-Sanjuan, A.M., Navarro-Medina, F., BenMoussa, A., Giordanengo, B., Gissot, S., Bellucci, G., Lopez-Moreno, J.J.: NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 2—design, manufacturing, and testing of the ultraviolet and visible channel. Appl. Opt. 56, 2771–2782 (2017)

    Article  Google Scholar 

  20. Fernández Rico, G., Perez-Grande, I.: Diseño térmico preliminar del Instrumento PHI de Solar Orbiter. In: Actas del VII Congreso Nacional de Ingeniería Termodinámica—CNIT7, Bilbao, España (2011)

  21. Pindado Carrion, S., Roibás-Millán, E., Cubas Cano, J., García, A., Sanz Andres, A.P., Franchini, S., Pérez Grande, M.I., Alonso, G., Pérez-Álvarez, J., Sorribes-Palmer, F., Fernandez-López, A., Ogueta-Gutierrez, M., Torralbo, I., Zamorano, J., Puente Alfaro, J.A. de la, Alonso, A., Garrido, J.: The UPMSat-2 Satellite: an academic project within aerospace engineering education. In: Athens: ATINER’S Conference Paper Series, No: ENGEDU2017-2333, pp. 1–28. Athens Institute for Education and Research, ATINER, Athens, Greece (2017)

  22. Cubas, J., Farrahi, A., Pindado, S.: Magnetic attitude control for satellites in polar or sun-synchronous orbits. J. Guid. Control Dyn. 38, 1947–1958 (2015). https://doi.org/10.2514/1.G000751

    Article  Google Scholar 

  23. Pindado, S., Sanz, A., Sebastian, F., Perez-grande, I., Alonso, G., Perez-Alvarez, J., Sorribes-Palmer, F., Cubas, J., Garcia, A., Roibas, E., Fernandez, A.: Master in space systems, an advanced Master’ s Degree in Space Engineering. In: ATINER’S Conference Paper Series, No: ENGEDU2016-1953, pp. 1–16. Athens, Greece (2016)

  24. Hotaling, N., Fasse, B.B., Bost, L.F., Hermann, C.D., Foresta, C.R.: A quantitative analysis of the effects of a multidisciplinary engineering capstone design course. J. Eng. Educ. 101, 630–656 (2012). https://doi.org/10.1002/j.2168-9830.2012.tb01122.x

    Article  Google Scholar 

  25. Jazebizadeh, H., Tabeshian, M., Taheran Vernoosfaderani, M.: Applying the system engineering approach to devise a master’s degree program in space technology in developing countries. Acta Astronaut. 67, 1323–1332 (2010). https://doi.org/10.1016/j.actaastro.2010.06.026

    Article  Google Scholar 

  26. Brodeur, D.R., Young, P.W., Blair, K.B.: Problem-Based Learning in Aerospace Engineering Education. In: Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition, Montreal, Canada (2002)

  27. Larson, W.J., Wertz, J.R. (eds.): Space mission analysis and design, 3rd edn. Microcosm Press/Kluwer Academic Publishers (1999)

  28. Brown, C.D. (ed.): Elements of spacecraft design. American Institute of Aeronautics and Astronautics, Inc. (2002)

  29. Fortescue, P., Stark, J., Swinerd, G. (eds.): Spacecraft systems engineering. Wiley (2003)

  30. Cubas, J., Pindado, S., Victoria, M.: On the analytical approach for modeling photovoltaic systems behavior. J. Power Sources 247, 467–474 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.008

    Article  Google Scholar 

  31. Cubas, J., Pindado, S., de Manuel, C.: Explicit expressions for solar panel equivalent circuit parameters based on analytical formulation and the lambert W-function. Energies 7, 4098–4115 (2014). https://doi.org/10.3390/en7074098

    Article  Google Scholar 

  32. Cubas, J., Pindado, S., Farrahi, A.: New method for analytical photovoltaic parameter extraction. In: Proceedings of the 2nd International Conference on Renewable Energy Research and Applications, ICRERA 2013, pp. 873–877. IEEE Press, Madrid (2013)

  33. Cubas, J., Pindado, S., De Manuel, C.: New method for analytical photovoltaic parameters identification: meeting manufacturer’s datasheet for different ambient conditions. In: Oral, A.Y., Bahsi, Z.B., Ozer, M. (eds.) International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013), Springer Proceedings in Physics 155, pp. 161–169. Springer International Publishing, Antalya (2014)

    Chapter  Google Scholar 

  34. Svelto, F., Flores, C., Caon, A., Contini, R., Rossi, E.: The Italian activities on GaAs solar cells for space applications: achieved results and future programmes. Sol. Energy Mater. Sol. Cells 35, 99–104 (1994). https://doi.org/10.1016/0927-0248(94)90128-7

    Article  Google Scholar 

  35. Cubas, J., Sorribes-Palmer, F., Pindado, S.: The use of STK as educational tool in the MUSE (Master in Space Systems), an Advanced Master’s Degree in Space. In: AGI’s 2nd International Users Conference: Ciao Roma!. 6–18 November, Rome, Italy (2016)

  36. Barkmeyer, M., Burger, W., Düver, F., Finkenwerder, E., Fries, D., Fuggmann, S., Heizmann, S., Herr, C., Rogge, N.H., Joos, H., Jüstel, P., Keppler, J., Keuper, R., Kunze, A., Lay, J., Le, H.A., Leinbach, F., Mosmann, V., Müller, F., Nizenkov, P., Ohno, D., Pfeifle, A., Salib, M., Scherrmann, M., Schmidt, M., Stierle, R., Teichmann, L., Torgau, T., Wischert, D.: Mission Design of a Two-Person Mars Flyby by 2018 (2014)

  37. Scholz, T., Asma, C.O., Aruliah, A.: Recommended Set of Models and Input Parameters for the Simulations of Orbital Dynamics of the Qb50 Cubesats. In: 5th ICATT. International Conference on Astrodynamics Tools and Techniques. ESTEC/ESA, The Netherlands, 29 May–1 June 2012, pp. 1–8 (2012)

  38. Askarzadeh, A., Rezazadeh, A.: Parameter identification for solar cell models using harmony search-based algorithms. Sol. Energy 86, 3241–3249 (2012). https://doi.org/10.1016/j.solener.2012.08.018

    Article  Google Scholar 

  39. Cubas, J., Pindado, S.: New method for analytical photovoltaic parameters identification: Meeting manufacturer’s datasheet for different ambient conditions. In: Springer Proceedings in Physics (2014)

  40. Pindado, S., Cubas, J., Sorribes-Palmer, F.: On the analytical approach to present engineering problems: photovoltaic systems behavior, wind speed sensors performance, and high-speed train pressure wave effects in tunnels. Math. Probl. Eng. 2015, 1–17 (2015). https://doi.org/10.1155/2015/897357

    Article  Google Scholar 

  41. Cubas, J., Pindado, S., Sanz-Andrés, Á.: Accurate simulation of MPPT methods performance when applied to commercial photovoltaic panels. Sci. World J. 2015, 1–16 (2015). https://doi.org/10.1155/2015/914212

    Article  Google Scholar 

  42. Pindado, S., Cubas, J.: Simple mathematical approach to solar cell/panel behavior based on datasheet information. Renew. Energy 103, 729–738 (2017). https://doi.org/10.1016/j.renene.2016.11.007

    Article  Google Scholar 

  43. Cubas, J., Pindado, S., Sorribes-Palmer, F.: Analytical calculation of photovoltaic systems maximum power point (MPP) based on the operation point. Appl. Sci. (2017). https://doi.org/10.3390/app7090870

    Google Scholar 

  44. Roibás-Millán, E., Alonso-Moragón, A., Jiménez-Mateos, A., Pindado, S.: Testing solar panels for small-size satellites: the UPMSAT-2 mission. Meas. Sci. Technol. 28, 115801 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the all IDR/UPM Institute staff for their constant support. Besides, the authors would like to express their gratitude to Javier Piqueras, Alvaro Alonso, Alejandro García, Alberto Núñez, María Lizana, Borja Torres, Jorge García, Jaime García and Juan Antonio Zaragoza, who being students of the MUSE showed an outstanding commitment to the projects related to space engineering power systems at the IDR/UPM Institute. Additionally, the authors are also indebted to the Bachelor’s Degree in Aerospace students Angel Porras and Daniel Alfonso, and the Lab Technician Fernando Gallardo, for their kind help in relation to the UPMSat-2 battery maintenance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Pindado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pindado, S., Cubas, J., Roibás-Millán, E. et al. Project-based learning applied to spacecraft power systems: a long-term engineering and educational program at UPM University. CEAS Space J 10, 307–323 (2018). https://doi.org/10.1007/s12567-018-0200-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-018-0200-1

Keywords

Navigation