Advertisement

CEAS Space Journal

, Volume 10, Issue 2, pp 273–286 | Cite as

Laser ignition of a multi-injector LOX/methane combustor

  • Michael BörnerEmail author
  • Chiara Manfletti
  • Justin Hardi
  • Dmitry Suslov
  • Gerhard Kroupa
  • Michael Oschwald
Original Paper

Abstract

This paper reports the results of a test campaign of a laser-ignited combustion chamber with 15 shear coaxial injectors for the propellant combination LOX/methane. 259 ignition tests were performed for sea-level conditions. The igniter based on a monolithic ceramic laser system was directly attached to the combustion chamber and delivered 20 pulses with individual pulse energies of \({33.2 \pm 0.8 \,\text{ mJ }}\) at 1064 nm wavelength and 2.3 ns FWHM pulse length. The applicability, reliability, and reusability of this ignition technology are demonstrated and the associated challenges during the start-up process induced by the oxygen two-phase flow are formulated. The ignition quality and pressure dynamics are evaluated using 14 dynamic pressure sensors distributed both azimuthally and axially along the combustion chamber wall. The influence of test sequencing on the ignition process is briefly discussed and the relevance of the injection timing of the propellants for the ignition process is described. The flame anchoring and stabilization process, as monitored using an optical probe system close to the injector faceplate connected to photomultiplier elements, is presented. For some of the ignition tests, non-uniform anchoring was detected with no influence onto the anchoring at steady-state conditions. The non-uniform anchoring can be explained by the inhomogeneous, transient injection of the two-phase flow of oxygen across the faceplate. This characteristic is verified by liquid nitrogen cold flow tests that were recorded by high-speed imaging. We conclude that by adapting the ignition sequence, laser ignition by optical breakdown of the propellants within the shear layer of a coaxial shear injector is a reliable ignition technology for LOX/methane combustors without significant over-pressure levels.

Keywords

Ignition Laser ignition LOX/CH\(_{4}\) Methane Green propellants Rocket engine 

List of symbols

BKA

Combustor model A

CFD

Computational fluid dynamics

CH\(_4\)

Methane

C\(_2\)H\(_6\)O

Ethanol

CO

Carbon monoxide

DSLR

Single-lens reflex camera

FWHM

Full width at half maximum

GCH\(_4\)

Gaseous methane

GH\(_2\)

Gaseous hydrogen

GOX

Gaseous oxygen

H\(_2\)

Hydrogen

LAI

Laser ablation ignition

LN2

Liquid nitrogen

LNG

Liquefied natural gas

LOX

Liquid oxygen

LPI

Laser plasma ignition

O\(_2\)

Oxygen

OH*

Hydroxyl radical

OMS

Orbital maneuvering system

OP1

Optical probe #1

Q-switched

Giant pulse formation

RCS

Reaction control system

ROF

Ratio of oxygen to fuel mass flow

RP-1

Rocket propellant 1

\(d_\mathrm{f}\)

Diameter of the laser pulse at the focal point

\(E_\mathrm{pulse}\)

Laser pulse energy

I

Laser intensity

\(\lambda\)

Laser wavelength

\(\mathcal {O}( \tau )\)

Order of magnitude of time

\(\tau _\mathrm{pulse}\)

laser pulse length (FWHM)

()\(_{\mathrm{max}}\)

maximum

()\(_\mathrm{st}\)

stoichiometric

()\(_\mathrm{thr}\)

threshold

()\(^\mathrm{ref}\)

reference

Notes

Acknowledgements

The authors greatly acknowledge the support of the DLR P8 test facility team and Alex Grebe during the campaign and of Stefan Gröning for help with the optical probe system.

References

  1. 1.
    Hurlbert, E.A., Ueno, H., Alexander, L., Klem, M.D., Daversa, E., Rualt, J., Manfletti, C., Caruana, J., Asakawa, H.: International space exploration coordination group assessment of technology gaps for LOX/methane propulsion systems for the global exploration roadmap. In: AIAA Space 2016 (2016)Google Scholar
  2. 2.
    Kato, T., Terakado, D., Nanri, H., Morito, T., Masuda, I., Asakawa, H., Sakaguchi, H., Ishikawa, Y., Inoue, T., Ishihara, S., et al.: Subscale firing test for regenerative cooling lox/methane rocket engine. In: EUCASS 2017 (2017)Google Scholar
  3. 3.
    Schiller, G.J.: Innovation at united launch alliance. In: AIAA Space 2016 (2016)Google Scholar
  4. 4.
    Blasi, R., Häberle, J.: LOX/methane thrust chamber demonstrator testing. In: Space Propulsion Conference 2016, SP2016-3124622 (2016)Google Scholar
  5. 5.
    Rudnykh, M., Carapellese, S., Liuzzi, D., Arione, L., Caggiano, G., Bellomi, P., Aversa, E.D., Pellegrini, R., Lobov, S.D., Gurtovoy, A.A., Rachuk, V.S.: Development of LM10-MIRA LOX/LNG expander cycle demonstrator engine. Acta Astron. 126, 364–374 (2016)CrossRefGoogle Scholar
  6. 6.
    Taya, K., Ishikawa, Y., Sakaguchi, H., Kimoto, K., Sato, Y.: Development and test of the LOX/methane regenerative cooled rocket engine. In: Space Propulsion Conference 2014, SPC-2969084 (2014)Google Scholar
  7. 7.
    Musk, E.: Making humans a multiplanetary species. In: 47th International Astronautical Congress (2016)Google Scholar
  8. 8.
    Blue Origin: BE-4: America’s Next Rocket Engine (2017). https://www.blueorigin.com/engines#be-4. Accessed 9 Feb 2018
  9. 9.
    Louaas, E., Baiocco, P., Palatin, V., Guelou, Y., Tchoukien, D., Espinosa, A., Leudiere, V.,  Cesco, N.: Technological Demonstrators Preparing the Future Launch Systems, Proceedings of the International Astronautical Congress, IAC2016-32771 (2016)Google Scholar
  10. 10.
    Breisacher, K.,  Ajmani, K.: Lox/methane main engine igniter tests and modeling. In: 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences (2008)Google Scholar
  11. 11.
    Sanchez, L.E., Chaparro, J.,  Torres, S.A., Love, N.D., Choudhuri, A.R.: Development and testing of a O\(_2\)/CH\(_4\) torch igniter for propulsion systems. In: 52nd AIAA/SAE/ASEE Joint Propulsion Conference. American Institute of Aeronautics and Astronautics (AIAA) (2016)Google Scholar
  12. 12.
    Atwell, M.J., Hurlbert, E.A., Melcher, J.C., Morehead, R.L.: Pressure-fed LOX/LCH4 reaction control system for spacecraft: transient modeling and thermal vacuum hotfire test results. In: 53rd AIAA/SAE/ASEE Joint Propulsion Conference, 10–12 Jul 2017, Atlanta (2017)Google Scholar
  13. 13.
    Kroupa, G., Franz, G., Winkelhofer, E.: Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines. Opt. Eng. 48 (2009)Google Scholar
  14. 14.
    Kroupa, G.: Laser ignition for space applications using a rugged and highly miniaturized Nd:YAG laser system. In: Laser Ignition Conference 2017, p. LTHA4.1. Optical Society of America, Washington, DC (2017)Google Scholar
  15. 15.
    Weinrotter, M.: Laser Ignition of Internal Combustion Engines: Basic Laser and Ignition Optics Developments, Engine Application and Optical Diagnostics. PhD thesis, Technische Universität Wien (2006)Google Scholar
  16. 16.
    Manfletti, C.: Laser ignition of an experimental cryogenic reaction and control thruster: ignition energies. J. Propuls. Power 30(4), 952–961 (2014)CrossRefGoogle Scholar
  17. 17.
    Liou, L.C.: Laser ignition in liquid rocket engines. In: 30th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, vol. AlAA-94-2980 (1994)Google Scholar
  18. 18.
    Trinh, H.P., Early, J., Osborne, R., Thomas, M., Bossard, J.: Status on technology development of optic fiber-coupled laser ignition system for rocket engine applications. In: JANNAF CS/APS/PSHS/MSS Meeting (2003)Google Scholar
  19. 19.
    Hasegawa, K., Sato, M.: Laser ignition characteristics of Gox/GH2 and Gox/GCH4 propellants. In: AIAA, 2003-4906 (2003)Google Scholar
  20. 20.
    Rebrov, S.G., Golikov, A.N., Golubev, V.A.: Laser ignition of rocket propellants in model combustion chamber. In: Trudy MAI (53) (2012)Google Scholar
  21. 21.
    Soller, S., Rackemann, N., Preuss, A.,  Kroupa, G.: Application of laser-ignition systems in liquid rocket engines, SPC2016-3124877. In: Space Propulsion Conference 2016 (2016)Google Scholar
  22. 22.
    Börner, M., Manfletti, C., Kroupa, G.,  Oschwald, M.: Repetitive laser ignition by optical breakdown of a LOX/H2 rocket combustion chamber with multi-injector head configuration. CEAS Space J. (2017)Google Scholar
  23. 23.
    Sudakov, V., Chvanov, V.K., Levochkin, P.S., Romasenko, E.N., Ivanov, N.G., Ganin, I.A., Surkov, B.I.: Laser ignition of LOX-kerosene propellant in liquid rocket engine of “Soyuz” LV. In: SPC-3124645, Space Propulsion Conference 2016, vol. SPC2016-3124645 (2016)Google Scholar
  24. 24.
    Wohlhüter, M., Zhukov, V., Börner, M.: Methane/oxygen laser ignition in an experimental rocket combustion chamber: impact of mixing and ignition position. In: Space Propulsion 2016, SPC2016-3124927 (2016)Google Scholar
  25. 25.
    Rebrov, S.G., Golikov, A.N., Golubev, V.A., Molchanov, A.M., Yakhina, G.R.: Numerical simulation of mixing process in combustion chamber for laser ignition with hydrogen–oxygen and methane–oxygen propellants. In: Trudy MAI (69) (2013)Google Scholar
  26. 26.
    Yang, B., Cuoco, F., Oschwald, M.: Atomization and flames in LOX/H\(_2\)- and LOX/CH\(_4\)- spray combustion. J. Propuls. Power 23(4), 763–771 (2007)CrossRefGoogle Scholar
  27. 27.
    Mewes, B., Rackemann, N., Kroupa, G.: Development of an analytical laser ignition model. In: SPC2016-3124995, Space Propulsion Conference 2016, Rome (2016)Google Scholar
  28. 28.
    Börner, M., Manfletti, C., Kroupa, G., Oschwald, M.: Laser ignition of an experimental combustion chamber with a multi-injector configuration at low pressure conditions. CEAS Space J. (2017)Google Scholar
  29. 29.
    Phuoc, T.X.: Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases. Opt. Commun. 175(4–6), 419–423 (2000)CrossRefGoogle Scholar
  30. 30.
    Glassman, I., Yetter, R.A.: Combustion, 4th edn. Academic Press, Burlington (2008)Google Scholar
  31. 31.
    Goodwin, D.G., Moffat, H.K., Speth, R.L.: Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, version 2.3.0. http://www.cantera.org (2017)
  32. 32.
    Mastorakos, E.: Ignition of turbulent non-premixed flames. Prog. Energy Combus. Sci. 35(1), 57–97 (2009)CrossRefGoogle Scholar
  33. 33.
    Choi, S., Kim, T.Y., Kim, H.K., Koo, J., Kim, J.S., Kwon, O.C.: Properties of inverse nonpremixed pure O\(_2\)/CH\(_4\) coflow flames in a model combustor. Energy 93, 1105–1115 (2015)CrossRefGoogle Scholar
  34. 34.
    Börner, M., Manfletti, C., Grebe, A., Gröning, S., Hardi, J., Stützer, R., Suslov, D., Oschwald, M.: Experimental study of a laser-ignited liquid cryogenic rocket engine. In: Laser Ignition Conference, p. Th2A.5. Optical Society of America, Washington, DC (2015)Google Scholar
  35. 35.
    Gröning, S., Hardi, J., Suslov, D., Oschwald, M.: Analysis of phase shift between oscillations of pressure and flame radiation intensity of self-excited combustion instabilities. In: \(6{\rm th}\) European Conference for Aeronautics and Space Sciences (EUCASS), Krakow, June–July 2015 (2015)Google Scholar
  36. 36.
    Soller, S., Kniesner, B., Maeding, C., Kaess, R., Behr, R., Dahlhaus, A., Blasi, R.: Astrium’s Lox/LCH4 Gas Generator Development Programme 07 (2013)Google Scholar
  37. 37.
    Gurliat, O., Schmidt, V., Haidn, O.J., Oschwald, M.: Ignition of cryogenic H\(_2\)/LOX sprays. Aerosp. Sci. Technol. 7(7), 517–531 (2003)CrossRefGoogle Scholar
  38. 38.
    Campbell, C.S., Egolfopoulos, F.N.: Kinetics paths to radical-induced ignition of methane/air mixtures. Combus. Sci. Technol. 177(12), 2275–2298 (2005)CrossRefGoogle Scholar
  39. 39.
    Hill, Ronald A.: Ignition-delay times in laser initiated combustion. Appl. Opt. 20(13), 2239–2242 (1981)CrossRefGoogle Scholar
  40. 40.
    Starikovskaia, S.M.: Plasma assisted ignition and combustion. J. Phys. D Appl. Phys. 39(16), R265 (2006)CrossRefGoogle Scholar

Copyright information

© CEAS 2018

Authors and Affiliations

  1. 1.Institute of Space PropulsionGerman Aerospace Center (DLR)LampoldshausenGermany
  2. 2.European Space Agency (ESA)ParisFrance
  3. 3.CTR Carinthian Tech Research AGVillachAustria

Personalised recommendations