CEAS Space Journal

, Volume 8, Issue 4, pp 229–236 | Cite as

Numerical and experimental analysis of spallation phenomena

  • Alexandre Martin
  • Sean C. C. Bailey
  • Francesco Panerai
  • Raghava S. C. Davuluri
  • Huaibao Zhang
  • Alexander R. Vazsonyi
  • Zachary S. Lippay
  • Nagi N. Mansour
  • Jennifer A. Inman
  • Brett F. Bathel
  • Scott C. Splinter
  • Paul M. Danehy
Original Paper


The spallation phenomenon was studied through numerical analysis using a coupled Lagrangian particle tracking code and a hypersonic aerothermodynamics computational fluid dynamics solver. The results show that carbon emission from spalled particles results in a significant modification of the gas composition of the post-shock layer. Results from a test campaign at the NASA Langley HYMETS facility are presented. Using an automated image processing of short exposure images, two-dimensional velocity vectors of the spalled particles were calculated. In a 30-s test at 100 W/cm2 of cold-wall heat flux, more than 722 particles were detected, with an average velocity of 110 m/s.


Ablation Spallation Arcjet Thermal protection system 


  1. 1.
    Martin, A., Cozmuta, I., Boyd, I.D., Wright, M.J.: Kinetic rates for gas-Phase chemistry of phenolic-based carbon ablator in atmospheric air. J. Thermophys. Heat Transf. 29(2), 222 (2015). doi:10.2514/1.T4184 CrossRefGoogle Scholar
  2. 2.
    Martin, A., Boyd, I.D.: Modeling of heat transfer attenuation by ablative gases during the stardust reentry. J. Thermophys. Heat Transf. 29(3), 450 (2015). doi:10.2514/1.T4202 CrossRefGoogle Scholar
  3. 3.
    Weng, H., Bailey, S.C.C., Martin, A.: Numerical study of iso-Q sample geometric effects on charring ablative materials. Int. J. Heat Mass Transf. 80, 570 (2015). doi:10.1016/j.ijheatmasstransfer.2014.09.040 CrossRefGoogle Scholar
  4. 4.
    Weng, H., Martin, A.: Multidimensional modeling of pyrolysis gas transport inside charring ablative materials. J. Thermophys. Heat Transf. 28(4), 583 (2014). doi:10.2514/1.T4434 CrossRefGoogle Scholar
  5. 5.
    Weng, H., Martin, A.: Numerical investigation of thermal response using orthotropic charring ablative material. J. Thermophys. Heat Transf. 29(3), 429 (2015). doi:10.2514/1.T4576 CrossRefGoogle Scholar
  6. 6.
    Miller, M.A., Martin, A., Bailey, S.C.C.: Investigation of the scaling of roughness and blowing effects on turbulent channel flow. Exp. Fluids 55(2), 1 (2014). doi:10.1007/s00348-014-1675-y CrossRefGoogle Scholar
  7. 7.
    Sullivan, J.M., Kobayashi, W.S.: Spallation modeling in the charring material thermal response and ablation (CMA) computer program. In: 22nd AIAA Thermophysics Conference. AIAA Paper 1987–1516, pp. 1–7 (1987). doi:10.2514/6.1987-1516
  8. 8.
    Lundell, J.H.: Spallation of the Galileo probe heat shield. In AIAA/ASME 3rd Joint Thermophysics and Heat Transfer Conference, AIAA Paper 82–0852, St. Louis, MO (1982). doi:10.2514/6.1982-852
  9. 9.
    Wakefield, R.M., Pitts, W.C.: Analysis of the heat-shield experiment on the pioneer-venus entry probes. In: 15th Thermophysics Conference, AIAA Paper 1980–1494, Snowmass, CO (1980). doi:10.2514/6.1980-1494
  10. 10.
    Balakrishnan, A., Nicolet, W.E.: Galileo probe forebody thermal protection - Benchmark heating environment calculations. In: 16th Thermophysics Conference, AIAA Paper 1981–1072, Palo Alto, CA (1981). doi:10.2514/6.1981-1072
  11. 11.
    Milos, F.S.: Galileo probe heat Shield ablation experiment. J. Spacecr. Rockets 34(6), 705 (1997). doi:10.2514/2.3293 CrossRefGoogle Scholar
  12. 12.
    Moss, J., Simmonds, A.: Galileo probe forebody flowfield predictions during Jupiter entry. In: 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, AIAA Paper 1982–0874, St. Louis, MO (1982). doi:10.2514/6.1982-874
  13. 13.
    Kihara, H., Hatano, M., Nakiyama, N., Abe, K., Nishida, M.: Preliminary studies of spallation particles ejected from an ablator. Trans. Jpn. Soc. Aeronaut. Space Sci. 49(164), 65 (2006). doi:10.2322/tjsass.49.65 CrossRefGoogle Scholar
  14. 14.
    Yoshinaka, T.: Spallation measurement at the ablator plasma wind tunnel tests. Tech. Rep. NASDA-TMR-970006E, National Space Development Agency of Japan, Tokyo (1998). https://repository.exst.jaxa.jp/dspace/handle/a-is/31442
  15. 15.
    Davies, C., Park, C.: Trajectories of solid particles spalled from a carbonaceous heat shield. In: 20th Aerospace Sciences Meeting, AIAA Paper 1982-200, Orlando, FL (1982). doi:10.2514/6.1982-200
  16. 16.
    Pace, A., Ruffin, S., Barnhardt, M.: A coupled approach for predicting radiation attenuation in particle-laced flows. In: 42nd AIAA Thermophysics Conference, AIAA Paper 2011-3771, Honolulu, Hawaii (2011). doi:10.2514/6.2011-3771
  17. 17.
    Nozawa, S., Kihara, H., Ichi Abe, K.: Numerical investigation of spalled particle behavior ejected from an ablator surface. Trans. Jpn. Soc. Aeronaut. Space Sci. 8(ists27), Pe\_9 (2010). doi:10.2322/tastj.8.Pe_9
  18. 18.
    Milos, F., Chen, Y.K.: Ablation, thermal response, and chemistry program for analysis of thermal protection systems. In: 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA Paper 2010-4663, Chicago, IL (2010). doi:10.2514/6.2010-4663
  19. 19.
    Inman, J.A., Bathel, B.F., Johansen, C.T., Danehy, P.M., Jones, S.B., Gragg, J.G., Splinter, S.C.: Nitric-Oxide planar laser-induced fluorescence measurements in the hypersonic materials environmental test system. AIAA J. 51(10), 2365 (2013). doi:10.2514/1.J052246 CrossRefGoogle Scholar
  20. 20.
    Zhang, H., Weng, H., Martin, A.: Simulation of flow-tube oxidation on the carbon preform of PICA. In 52nd AIAA Aerospace Sciences Meeting, AIAA Paper 2014-1209, National Harbor, MD (2014). doi:10.2514/6.2014-1209
  21. 21.
    Zhang, H., Martin, A., McDonough, J.M.: Parallel efficiency of the freeCFD code for hypersonic flows with chemistry. In: 24th International Conference on Parallel Computational Fluid Dynamics, Atlanta, GA (2012)Google Scholar
  22. 22.
    Park, C.: Assessment of a two-temperature kinetic model for dissociating and weakly ionizing nitrogen. J. Thermophys. Heat Transf. 2(1), 8 (1988). doi:10.2514/3.55 CrossRefGoogle Scholar
  23. 23.
    Blottner, F.G., Johnson, M., Ellis, M.: Chemically reacting viscous flow program for multi-component gas mixtures. Tech. Rep. SC-RR-70-754, Sandia National Laboratories, Albuquerque, New Mexico (1971). doi:10.2172/4658539
  24. 24.
    Vincenti, W.G., Kruger, C.H.: Introduction to physical gas dynamics. Krieger Publishing Company, Malabar, Florida (1982)Google Scholar
  25. 25.
    Zhang, H.: High temperature flow solver for aerothermodynamics problems. Ph.D. Thesis, University of Kentucky, Lexington, KY (2015). http://uknowledge.uky.edu/me_etds/64
  26. 26.
    Driver, D.M., MacLean, M.: Improved predictions of PICA recession in arc jet shear tests. In: 49th AIAA Aerospace Sciences Meeting, AIAA Paper 2011-141 (2011). doi:10.2514/6.2011-141
  27. 27.
    Maclean, M., Marschall, J., Driver, D.M.: Finite-Rate surface chemistry model, II: Coupling to viscous navier-stokes code. In: 42nd AIAA Thermophysics Conference, AIAA Paper 2011-3784 (2011). doi:10.2514/6.2011-3784
  28. 28.
    Davuluri, R.S.C., Martin, A.: Numerical study of spallation phenomenon in an arc-jet environment. In: 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA Paper 2014-2249, Atlanta, GA, (2014). doi:10.2514/6.2014-2249
  29. 29.
    Davuluri, R.S.C., Zhang, H., Martin, A.: Numerical study of spallation phenomenon in an arc-jet environment. J. Thermophys. Heat Transf. 30(1), 32 (2015). doi:10.2514/1.T4586
  30. 30.
    Davuluri, R.S.C.: Modeling of spallation phenomenon in an arc-jet environment. M.Sc. Thesis, University of Kentucky, Lexington, KY (2015). http://uknowledge.uky.edu/me_etds/63
  31. 31.
    Davuluri, R.S.C., Zhang, H., Martin, A.: Effect of spalled particles thermal degradation on a hypersonic flow field environment. In: 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-0248, San Diego, CA (2016). doi:10.2514/6.2016-0248
  32. 32.
    Danehy, P.M., Hires, D.V., Johansen, C.T., Bathel, B.F., Jones, S.B., Gragg, J.G., Splinter, S.C.: Quantitative spectral radiance measurements in the HYMETS arc jet. In: 50th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2012-856, Nashville, TN (2012). doi:10.2514/6.2012-856
  33. 33.
    Majid, A., Bauder, U., Herdrich, G., Fertig, M.: Effect of dust particles on space vehicles entering Mars at hypersonic speeds. In: 63rd International Astronautical Congress (IAC 2012), IAC-12, A3,3C,11, x13315, Naples, Italy (2012). http://iafastro.directory/iac/archive/browse/IAC-12/A3/3C/13315/
  34. 34.
    Majid, A., Bauder, U., Stindl, T., Fertig, M., Herdrich, G., Röser, H.P.: Development of a two phase solver accounting for solid particles in continuum gas flows. In: 40th Thermophysics Conference, AIAA Paper 2008-4105, Seattle, WA (2008). doi:10.2514/6.2008-4105
  35. 35.
    Raiche, G.A., Driver, D.M.: Shock layer optical attenuation and emission spectroscopy measurements during arc jet testing with ablating models. In: 42th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2004-0825, Reno NV (2004). doi:10.2514/6.2004-825
  36. 36.
    Park, C., Raiche, G.A., Driver, D.M.: Radiation of spalled particles in shock layers. J. Thermophys. Heat Transf. 18(4), 519 (2004). doi:10.2514/1.8098 CrossRefGoogle Scholar
  37. 37.
    Tran, H.K., Johnson, C.E., Rasky, D.J., Hui, F.C.L., Hsu, M.T., Chen, Y.K.: Phenolic impregnated carbon ablators (PICA) for discovery class missions. In: 31st AIAA Thermophysics Conference. AIAA Paper 1996-1911, New Orleans, LA, pp. 1–14 (1996). doi:10.2514/6.1996-1911

Copyright information

© CEAS (outside the USA) 2016

Authors and Affiliations

  1. 1.University of KentuckyLexingtonUSA
  2. 2.NASA Ames Research CenterMoffett FieldUSA
  3. 3.NASA Langley Research CenterHamptonUSA

Personalised recommendations