CEAS Space Journal

, Volume 6, Issue 1, pp 3–11 | Cite as

Mars EXPRESS observation of the PHOENIX entry: simulations, planning, results and lessons learned

  • O. Witasse
  • M. Lino da Silva
  • R. Sobbia
  • P. Leyland
  • L. Marraffa
  • P. Schmitz
  • J. Diaz del Rio
  • G. Neukum
  • H. Hoffmann
  • J.-L. Bertaux
  • F. Montmessin
  • A. Reberac
  • A. Christou
Original Paper


NASA’s PHOENIX spacecraft has successfully landed on Mars on 25 May 2008. ESA supported the event by recording signals from PHOENIX by the Mars EXPRESS spacecraft using its lander communication subsystem. Following numerical simulations of the probe entry plume emission, two Mars EXPRESS instruments, namely the High Resolution and Stereo Camera (HRSC) and the Ultraviolet and Infrared Spectrometer (SPICAM), were switched on in to observe the emission associated with the atmospheric entry. No positive detection was reported unfortunately. This article reports on the simulations, the planning, and the results. The non-detection by the UV spectrometer was due to a wrong instrument setting. Result for the camera is tentatively explained by the level of emission in the visible range. Lessons learned are given in the conclusions: the entry probe trajectory should be communicated as soon as possible to all interested parties, within the boundary conditions of confidentiality obviously. It is important to plan some redundancy to prevent incorrect instrument operations. A multi-instrument multi-spacecraft campaign should be encouraged by all means. Since detection of such faint signal is challenging, the integration time must be properly matched to the event duration. Payload operational (exclusion) rules should be discussed in an open way, to check whether the prudence of such measures is procedural or physical. The numerical simulations discussed in this paper have been focused on IR radiation in the lower density flow wake, using a DSMC/line-by-line method. These could be complemented with other numerical approaches more focused in the VUV–visible region in the high-pressure bow-shock region, using continuum Navier–Stokes fluid methods, which would yield information on the contribution to the emission spectrum from minor flow species such as CN, C2 and C.


Atmospheric entry Mars Observation Mars EXPRESS PHOENIX Radiation Infrared 



The first spacecraft entry observation campaign of Mars EXPRESS was possible due to the cooperation of many people from the Mars EXPRESS project [the Science Ground Segment at ESAC (Spain) and the Mission Operations Center at ESOC (Germany)], the ESA/ESTEC Aerothermodynamic Section (Lionel Maraffa) in collaboration with the Ecole Polytechnique Fédérale de Lausanne, Switzerland (Raffaello Sobbia, Pénélope Leyland), and the Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Lisbon, Portugal (Mario Lino da Silva). One of the authors, Raffaello Sobbia, was partially funded by the ESA NPI project number C20930 and the Swiss National Science Foundation project number 2021-125225. The images of Figs. 8, 9, 10 were retrieved from the ESA Planetary Science Archive. The authors would also wish to thank the reviewers, whose comments have allowed significantly improving the structure of this article.


  1. 1.
    Guinn, JR., Garcia, MD., Talley, K.: Mission design of the Phoenix Mars Scout mission. J. Geophys. Res. 113(E3), (2008). doi: 10.1029/2007JE003038
  2. 2.
    Kirk, DB., Intrieri, PF., Seiff, A.: Aerodynamic behavior of the viking entry vehicle—ground test and flight results. In: Atmospheric flight mechanics conference, Hollywood, Fla., 8–10 August 1977, technical papers (A77-43151 20-08), pp 328–332. American Institute of Aeronautics and Astronautics, Inc., New York (1977)Google Scholar
  3. 3.
    Spencer, D.A., Braun, R.D.: Mars Pathfinder atmospheric entry—trajectory design and dispersion analysis. J Spacecr Rockets. 33(5), 670–676 (1996)CrossRefGoogle Scholar
  4. 4.
    Desai, PN., Lee, WJ.: Entry descent, and landing scenario for the Mars Exploration Rover Mission. In: A. Wilson. (ed.) ESA SP-544: Proceedings of the International Workshop Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science, 6–9 October 2003, Lisbon, Portugal, pp. 31–36. ESA Publications Division, Noordwijk (2004)Google Scholar
  5. 5.
    Chicarro, AF.: Scientific Investigations of the Mars Express Mission, EGS–AGU–EUG Joint Assembly, Abstract 6736, Abstracts from the Meeting Held in Nice, France, 6–11 April (2003)Google Scholar
  6. 6.
    Surkov, Y.: Venera Data on Atmosphere and Surface Composition. USSR Rept.: Space, No. 16 (JPRS-81359), pp. 7–11 (1982)Google Scholar
  7. 7.
    Clark, P.: The VEGA missions. Spaceflight. 27, 218–220 (1985)Google Scholar
  8. 8.
    Nolte, LJ., Sommer, SC.: Probing a planetary atmosphere—pioneer Venus spacecraft description. In: AIAA & AGU Conference on the Exploration of the Outer Planets. St. Louis, 17–19 Sept (1975)Google Scholar
  9. 9.
    Young, R.E., Smith, M.A., Sobeck, C.K.: Galileo probe: in situ observations of Jupiter’s atmosphere. Science. 272(5263), 837–838 (1996)CrossRefGoogle Scholar
  10. 10.
    Lebreton, J.-P., Witasse, O., Sollazzo, C., Blancquaert, T., Couzin, P., Schipper, A.-M., Jones, J.B., Matson, D.L., Gurvits, L.I., Atkinson, D.H., Kazeminejad, B., Pérez-Ayúcar, M.: An overview of the descent and landing of the Huygens probe on Titan. Nature. 438(7069), 758–764 (2005)CrossRefGoogle Scholar
  11. 11.
    Grotzinger, J.P., Crisp, J., Vasavada, A.R., Anderson, R.C., Baker, C.J., Barry, R., Blake, D.F., Conrad, P., Edgett, K.S., Ferdowski, B., Gellert, R., Gilbert, J.B., Golombek, M., Gómez–Elvira, J., Hassler, D.M., Jandura, L., Litvak, M., Mahaffy, P., Maki, J., Meyer, M., Malin, M.C., Mitrofanov, I., Simmonds, J.J., Vaniman, D., Welch, R.V., Wiens, R.C.: Mars Science Laboratory Mission and Science Investigation. Space Sci. Rev. 170(1–4), 5–56 (2012)CrossRefGoogle Scholar
  12. 12.
    Revelle, D.O., Edwards, W.N.: Stardust—an artificial, low-velocity “meteor” fall and recovery: 15 January 2006. Meteorit. Planet. Sci.. 42(2), 271–299 (2007)CrossRefGoogle Scholar
  13. 13.
    Snively, J.B., Taylor, M.J., Jenniskens, P.: Airborne imaging and NIR spectroscopy of the ESA ATV spacecraft re-entry: instrument design and preliminary data description. Int. J. Remote Sens. 32(11), 3019–3027 (2011)CrossRefGoogle Scholar
  14. 14.
    Abe, S., Fujita, K., Kakinami, Y., Iiyama, O., Kurosaki, H., Shoemaker, M.A., Shiba, Y., Ueda, M., Suzuki, M.: Near-ultraviolet and visible spectroscopy of HAYABUSA spacecraft re-entry. Publ. Astron. Soc. Jpn.. 63(5), 1011–1021 (2011)Google Scholar
  15. 15.
    Lorenz, R., Witasse, O., Lebreton, J-P., Blancquaert, T., de Pater, I., Mazoue, F., Roe, H., Lemmon, MT., Burratti, BJ., Holmes, S., Noll, K.: Huygens entry Emission: observation campaign, results, and lessons learned. J. Geophys. Res. 111, E07S11, No. E7 (2006)Google Scholar
  16. 16.
    Witasse, O., Lebreton, J.-P., Bird, M.K., Dutta–Roy, R., Folkner, W.M., Preston, R.A., Asmar, S.W., Gurvits, L.I., Pogrebenko, S.V., Avruch, I.M., Campbell, R.M., Bignall, H.E., Garrett, M.A., van Langevelde, H.J., Parsley, S.M., Reynolds, C., Szomoru, A., Reynolds, J.E., Phillips, C.J., Sault, R.J., Tzioumis, A.K., Ghigo, F., Langston, G., Brisken, W., Romney, J.D., Mujunen, A., Ritakari, J., Tingay, S.J., Dodson, R.G., van’t Klooster, C.G.M., Blancquaert, T., Coustenis, A., Gendron, E., Sicardy, B., Hirtzig, M.; Luz, D., Negrão, A., Kostiuk, T., Livengood, T.A., Hartung, M., de Pater, I., Ádámkovics, M., Lorenz, R.D., Roe, H., Schaller, E., Brown, M., Bouchez, A.H., Trujillo, C.A., Buratti, B.J., Caillault, L., Magin, T., Bourdon, A., Laux, C.: Overview of the coordinated ground-based observations of Titan during the Huygens mission. J. Geophys. Res. 111, E07S01, No. E7 (2006)Google Scholar
  17. 17.
    Lino da Silva, M., Sobbia, R., Witasse, O.: Radiative trail of the PHOENIX entry. In: AIAA Paper 2009–1032 47th AIAA Aerospace Sciences Meeting, Orlando, FL, 5–8 January (2009)Google Scholar
  18. 18.
    Bird, G.A.: Rarefied Gas Dynamics and the Direct Simulation of Gas Flows. Claredon Press, Oxford (1994)Google Scholar
  19. 19.
    Bird, G.A.: The DS2V/3V program suite for DSMC calculations. Rarefied gas dynamics: 24 h international symposium on rarefied gas dynamics. In: AIP Conference Proceedings, Vol. 762, pp. 541–546 (2005)Google Scholar
  20. 20.
    Lewis, S.R., Collins, M., Read, P.L., Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Huot, J.-P. A climate database for Mars. J. Geophys. Res. 104(E10): 24177–24194 (1999)Google Scholar
  21. 21.
    Mars Climate Database version 5.0 Web Interface.
  22. 22.
    Linoda Silva, M.: An adaptive line-by-line-statistical model for fast and accurate spectral simulations in low-pressure plasmas. J. Quant. Spectrosc. Radiat. Transf.. 108(1), 106–125 (2007)CrossRefGoogle Scholar
  23. 23.
    The line-by-line code SPARTAN.
  24. 24.
    Chicarro, A.: One Martian year in orbit—the science from Mars Express. ESA Bull. 125, 16–19 (2006)Google Scholar
  25. 25.
    Pischel, R., Zegers T.: Mars Express science planning and operations. In: Witasse, O. (ed.) ESA SP-1291: Mars Express—The Scientific Investigations, pp. 249–256. ESA Publications Division, Noordwijk. ISBN 92-9221-975-8 (2009)Google Scholar
  26. 26.
    Lino da Silva, M.: Simulation des Propriétés Radiatives du Plasma Entourant un Véhicule Traversant une Atmosphère Planétaire à à Vitesse Hypersonique: Application à à la planète Mars. PhD Thesis (in French), Université. Orléans. (2004)

Copyright information

© CEAS 2013

Authors and Affiliations

  • O. Witasse
    • 1
  • M. Lino da Silva
    • 2
  • R. Sobbia
    • 3
  • P. Leyland
    • 3
  • L. Marraffa
    • 1
  • P. Schmitz
    • 4
  • J. Diaz del Rio
    • 5
  • G. Neukum
    • 6
  • H. Hoffmann
    • 7
  • J.-L. Bertaux
    • 8
  • F. Montmessin
    • 8
  • A. Reberac
    • 8
  • A. Christou
    • 9
  1. 1.European Space Agency, ESTECNoordwijkThe Netherlands
  2. 2.Instituto de Plasmas e Fusão Nuclear, Laboratório AssociadoInstituto Superior Técnico, Universidade de LisboaLisbonPortugal
  3. 3.Interdisciplinary Aerodynamic Group (IAG) EPFL, IGM/STILausanneSwitzerland
  4. 4.European Space Agency, ESOCDarmstadtGermany
  5. 5.European Space Agency, ESACMadridSpain
  6. 6.Freie Universitaet BerlinBerlinGermany
  7. 7.DLR Berlin AdlershofBerlinGermany
  8. 8.LATMOS LaboratoryGuyancourtFrance
  9. 9.Armagh ObservatoryArmaghUK

Personalised recommendations