Advertisement

CEAS Space Journal

, Volume 2, Issue 1–4, pp 3–16 | Cite as

The cosmic dust analyser onboard cassini: ten years of discoveries

  • R. Srama
  • S. Kempf
  • G. Moragas-Klostermeyer
  • N. Altobelli
  • S. Auer
  • U. Beckmann
  • S. Bugiel
  • M. Burton
  • T. Economomou
  • H. Fechtig
  • K. Fiege
  • S. F. Green
  • M. Grande
  • O. Havnes
  • J. K. Hillier
  • S. Helfert
  • M. Horanyi
  • S. Hsu
  • E. Igenbergs
  • E. K. Jessberger
  • T. V. Johnson
  • E. Khalisi
  • H. Krüger
  • G. Matt
  • A. Mocker
  • P. Lamy
  • G. Linkert
  • F. Lura
  • D. Möhlmann
  • G. E. Morfill
  • K. Otto
  • F. Postberg
  • M. Roy
  • J. Schmidt
  • G. H. Schwehm
  • F. Spahn
  • V. Sterken
  • J. Svestka
  • V. Tschernjawski
  • E. Grün
  • H.-P. Röser
Original Paper

Abstract

The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after 7 years of cruise phase. The German cosmic dust analyser (CDA) was developed under the leadership of the Max Planck Institute for Nuclear Physics in Heidelberg under the support of the DLR e.V. This instrument measures the interplanetary, interstellar and planetary dust in our solar system since 1999 and provided unique discoveries. In 1999, CDA detected interstellar dust in the inner solar system followed by the detection of electrical charges of interplanetary dust grains during the cruise phase between Earth and Jupiter. The instrument determined the composition of interplanetary dust and the nanometre-sized dust streams originating from Jupiter’s moon Io. During the approach to Saturn in 2004, similar streams of submicron grains with speeds in the order of 100 km/s were detected from Saturn’s inner and outer ring system and are released to the interplanetary magnetic field. Since 2004 CDA measured more than one million dust impacts characterising the dust environment of Saturn. The instrument is one of the three experiments which discovered the active ice geysers located at the south pole of Saturn’s moon Enceladus in 2005. Later, a detailed compositional analysis of the water ice grains in Saturn’s E ring system led to the discovery of large reservoirs of liquid water (oceans) below the icy crust of Enceladus. Finally, the determination of the dust-magnetosphere interaction and the discovery of the extended E ring (at least twice as large as predicted) allowed the definition of a dynamical dust model of Saturn’s E ring describing the observed properties. This paper summarizes the discoveries of a 10-year story of success based on reliable measurements with the most advanced dust detector flown in space until today. This paper focuses on cruise results and findings achieved at Saturn with a focus on flux and density measurements. CDA discoveries related to the detailed dust stream dynamics, E ring dynamics, its vertical profile and E ring compositional analysis are published elsewhere (see Hus et al. in AIP Conference Proccedings 1216:510–513, 2010; Hsu et al. in Icarus 206:653–661, 2010; Kempf et al. in Icarus 193:420, 2008; 206(2):446, 2010; Postberg et al. in Icarus 193(2):438, 2008; Nature 459:1098, 2009; Nature, 2011, doi: 10.1038/nature10175).

Keywords

Cosmic dust analyser Cassini CDA Interplanetary dust Interstellar dust Planetary ring E ring Enceladus Cosmochemistry Saturn Water ice Geyser Impact ionisation PVDF 

Notes

Acknowledgments

The Cassini cosmic dust analyser science planning, operations and science analysis is supported by the Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) on behalf of the BMWi under the project grant 50 OH 1103.

References

  1. 1.
    Altobelli, N., Kempf, S., Krüger, H., Landgraf, M., Srama, R., and Grün, E.: In: Popescu, C.C., Tuffs, R.J. (eds) AIP Conference Proceedings 761: the spectral energy distributions of gas-rich galaxies: confronting models with data (2005)Google Scholar
  2. 2.
    Colwell, J.E.: A general formulation for the distribution of impacts, ejecta from small planetary satellites. Icarus 106, 536 (1993)CrossRefGoogle Scholar
  3. 3.
    de Pater, I., Martin, S.C., Showalter, M.R.: Keck near-infrared observations of Saturn’s E, G rings during Earth’s ring plane crossing in August 1995. Icarus 172, 446 (2004)CrossRefGoogle Scholar
  4. 4.
    Dikarev, V.: Dynamics of particles in Saturn’s E ring: effects of charge variations, the plasma drag force. Astron. Astrophys. 346, 1011 (1999)Google Scholar
  5. 5.
    Graps, A.L., Grün, E., Svedhem, H., Krüger, H., Horanyi, M., Heck, A., Lammers, S.: Io as a source for the Jovian dust streams. Nature 405, 48 (2000)CrossRefGoogle Scholar
  6. 6.
    Grün, E., Baguhl, M., Hamilton, D.P., Riemann, R., Zook, H.A., Dermott, S., Fechtig, H., Gustafson, B.A., Hanner, M.S., Horányi, M., Khurana, K.K., Kissel, J., Kivel-son, M., Lindblad, B.A., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Polanskey, C., Schwehm, G., Srama, R.: Constraints from Galileo observations on the origin of Jovian dust streams. Nature 381, 395 (1996)CrossRefGoogle Scholar
  7. 7.
    Grün, E., Zook, H.A., Baguhl, M., Balogh, A., Bame, S.J., Fechtig, H., Forsyth, R., Hanner, M.S., Horanyi, M., Khurana, K.K., Kissel, J., Kivelson, M., Lindblad, B.A., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Phillips, J.L., Polanskey, C., Schwehm, G., Siddique, N., Staubach, P., Svestka, J., Taylor, A.: Discovery of Jovian dust streams, interstellar grains by the Ulysses spacecraft. Nature 362, 428 (1993)CrossRefGoogle Scholar
  8. 8.
    Hillier, J.K., Green, S.F., McBride, N., Altobelli, N., Postberg, F., Kempf, S., Schwanethal, J.P., Srama, R., McDonnell, J.A.M., Grün, E.: Interplanetary dust detected by the Cassini CDA chemical analyser. Icarus 190(2), 643 (2007)CrossRefGoogle Scholar
  9. 9.
    Horanyi, M.: Dust streams from Jupiter, Saturn. Phys. Plasmas 7(10), 3847 (2000)CrossRefGoogle Scholar
  10. 10.
    Horanyi, M., Juhasz, A., Morfill, G.E.: Large-scale structure of Saturn’s E ring. Geophys. Res. Lett. 35(4), 4203 (2008)CrossRefGoogle Scholar
  11. 11.
    Hsu, H., Kempf, S., Postberg, F., Srama, R., Jackman, C., Moragas-Klostermeyer, G., Helfert, S., and Grün, E.: In: AIP Conference Proceedings, vol. 1216, pp 510–13, American Institute of Physics, USA, Interaction of the solar wind and stream particles, results from the Cassini dust detector, Twelfth International Solar wind Conference, 21–26 June 2009, Saint-Malo, France (2010)Google Scholar
  12. 12.
    Hsu, H., Kempf, S., Jackman, C.M.: Observation of Saturnian stream particles in the interplanetary space. Icarus 206, 653–661 (2010). doi: 10.1016/j.icarus.2009.06.033 CrossRefGoogle Scholar
  13. 13.
    Hsu, H., Kempf S., Postberg F., Trieloff M., Burton M.E., Roy M., Moragas-Klostermeyer G., Srama, R.: Cassini dust stream particle measurements during the first three orbits. Saturn, J. Geophys. Res. 116 (2011) [in press]Google Scholar
  14. 14.
    Hsu, H., Postberg, F., Kempf, S., Trieloff, M., Burton, M., Roy, M., Moragas-Klostermeyer, G., Srama, R., Stream particles as the probe the dust-plasma-magnetosphere interaction at Saturn. J. Geophys. Res. (2011) (submitted) Google Scholar
  15. 15.
    Kempf, S.: What happened to the HRD, Technical report, MPI Kernphysik (2005)Google Scholar
  16. 16.
    Kempf, S.: Saturnian dust: rings, ice volcanoes, and streams, habilitation, University of Braunschweig (2007)Google Scholar
  17. 17.
    Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., Economou, T., Schmidt, J., Spahn, F., Grün, E.: The E ring in the vicinity of Enceladus I: spatial distribution, properties of the ring particles. Icarus 193, 420 (2008)CrossRefGoogle Scholar
  18. 18.
    Kempf, S., Beckmann, U., Schmidt, J.: How the Enceladus dust plume feeds Saturn’s E-ring. Icarus 206(2), 446 (2010)CrossRefGoogle Scholar
  19. 19.
    Kempf, S., Beckmann, U., Srama, R., Horanyi, M., Auer, S., Grün, E.: The electrostatic potential of E-ring particles. Planet. Space Sci. 54, 999 (2006)CrossRefGoogle Scholar
  20. 20.
    Kempf, S., Srama, R., Altobelli, N., Auer, S., Tschernjawski, V., Bradley, J., Burton, M., Helfert, S., Johnson, T., Krüger, H., Moragas-Klostermeyer, G., Grün, E.: Cassini between Earth, asteroid belt: first in situ charge measurements of interplanetary grains. Icarus 171, 317 (2004)CrossRefGoogle Scholar
  21. 21.
    Kempf, S., Srama, R., Horanyi, M., Burton, M., Helfert, S., Moragas-Klostermeyer, G., Roy, M., Grün, E.: Nature 433, 289 (2005a)Google Scholar
  22. 22.
    Kempf, S., Srama, R., Postberg, F., Burton, M., Green, S.F., Helfert, S., Hillier, J.K., McBride, N., McDonnell, J. A.M., Moragas-Klostermeyer, G., Roy, M., Grün, E.: Composition of Saturnian stream particles. Science 307, 1274 (2005b)Google Scholar
  23. 23.
    Krivov, A.V., Sremcevic, M., Spahn, F., Dikarev, V.V., Kholshevnikov, K.V.: Impact-generated dust clouds around planetary satellites: spherically symmetric case. Planet. Space Sci. 51, 251 (2003)CrossRefGoogle Scholar
  24. 24.
    Krüger, H., Geissler, P., Horanyi, M., Graps, A., Kempf, S., Srama, R., Moragas-Klostermeyer, G., Moissl, R., Johnson, T., Grün, E.: Impact-generated dust clouds surrounding the Galilean moons. Geophys. Res. Lett. 30, 3 (2003)Google Scholar
  25. 25.
    Krüger, H., Graps, A.L., Hamilton, D.P., Flandes, A., Forsyth, R.J., Horanyi, M., Grün, E.: Ulysses Jovian latitude scan of high-velocity dust streams originating from the jovian system. Planet. Space Sci. 54, 919 (2006)CrossRefGoogle Scholar
  26. 26.
    Landgraf, M., Baggaley, W., Grün, E., Krüger, H., Linkert, G.: Modeling the motion, distribution of interstellar dust inside the heliosphere. J. Geophys. Res. 105, 10343 (2000)CrossRefGoogle Scholar
  27. 27.
    Postberg, F., Kempf, S., Srama, R., Green, S.F., Hillier, J.K., McBride, N., Grün, E.: Composition of Jovian dust stream particles. Icarus 183, 122 (2006)CrossRefGoogle Scholar
  28. 28.
    Postberg, F., Kempf, S., Hillier, J.K., Srama, R., Green, S.F., McBride, N., Grün, E.: The E ring in the vicinity of Enceladus II: Signatures of Enceladus in the elemental composition of E-ring. Icarus 193(2), 438 (2008)CrossRefGoogle Scholar
  29. 29.
    Postberg, F., Kempf, S., Srama, R., Gruen, E., Hillier, J.K., Green, S.F., McBride, N.: Composition of Saturnian E-ring particles. Probing subsurface oceans of Enceladus? Intern. J. Astrobiol 7(1), 68 (2008)Google Scholar
  30. 30.
    Postberg, F., Kempf, S., Schmidt, J., Brillantov, N., Beinsen, A., Abel, B., Buck, U., Srama, R.: Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098 (2009)CrossRefGoogle Scholar
  31. 31.
    Postberg, F., Schmidt, J., Hillier, J., Kempf, S., Srama, R., A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature (2011). doi: 10.1038/nature10175
  32. 32.
    Schmidt, J., Brilliantov, N., Spahn, F., Kempf, S.: Slow dust in Enceladus’ plume from condensation, wall collisions in tiger stripe fractures. Nature 451, 685 (2008)CrossRefGoogle Scholar
  33. 33.
    Showalter, M.R., Cuzzi, J.N., Larson, S.M.: Structure and particle properties of Saturn's E ring. Icarus 94, 451 (1991)Google Scholar
  34. 34.
    Simpson, J.A., Tuzzolino, A.J.: Polarized polymer films as electronic pulse detectors of cosmic dust particles. Nucl. Instr. Meth. 187(A236) (1985)Google Scholar
  35. 35.
    Spahn, F., Albers, N., Horning, M., Kempf, S., Krivov, A.V., Makuch, M., Schmidt, J., Seiß, M., Sremcević, M.: E ring dust sources: implications from Cassini’s dust measurements. Planet. Space Sci. 54, 1024 (2006)CrossRefGoogle Scholar
  36. 36.
    Spahn, F., Schmidt, J.: Planetary science: Saturn’s bared mini-moons. Nature 440, 614 (2006)CrossRefGoogle Scholar
  37. 37.
    Spahn, F., Schmidt, J., Albers, N., Horning, M., Makuch, M., Seiß, M., Kempf, S., Srama, R., Dikarev, V., Helfert, S., Moragas-Klostermeyer, G., Krivov, A.V., Sremcević, M., Tuzzolino, A.J., Economou, T., Grün, E.: Cassini dust measurements at Enceladus, implications for the origin of the E ring. Science 311, 1416 (2006)CrossRefGoogle Scholar
  38. 38.
    Spahn, F., Thiessenhusen, K.-U., Colwell, J.E., Srama, R., Grün, E.: Dynamics of dust ejected from Enceladus: application to the Cassini dust detector. J. Geophys. Res. 104, 24111 (1999)CrossRefGoogle Scholar
  39. 39.
    Srama, R.: Kombination von Messsystemen zur simultanen Messung der Eigenschaften von kosmischen Staub, 2000, Ph.D. thesis, Technische Univ. MünchenGoogle Scholar
  40. 40.
    Srama, R.: Cassini-Huygens and beyond—tools for dust astronomy, habilitation, University of Stuttgart (2010)Google Scholar
  41. 41.
    Srama, R., Ahrens, T., Altobelli, N., Auer, S., Bradley, J., Burton, M., Dikarev, V., Economou, T., Fechtig, H., Görlich, M., Grande, M., Graps, A., Grün, E., Havnes, O., Helfert, S., Horanyi, M., Igenbergs, E., Jeßberger, E., Johnson, T., Kempf, S., Krivov, A., Krüger, H., Mocker-Ahlreep, A., Moragas-Klostermeyer, G., Lamy, P., Landgraf, M., Linkert, D., Linkert, G., Lura, F., McDonnel, J., Möhlmann, D., Morfill, G., Müller, M., Roy, M., Schäfer, G., Schlotzhauer, G., Schwehm, G., Spahn, F., Stübig, M., Svestka, J., Tschernjawski, V., Tuzzolino, A., Wäsch, R., Zook, H.: The Cassini Cosmic Dust Analyzer. Space Sci. Rev. 114, 465 (2004)CrossRefGoogle Scholar
  42. 42.
    Srama, R., Kempf, S., Moragas-Klostermeyer, G., Helfert, S., Ahrens, T.J., Altobelli, N., Auer, S., Beckmann, U., Bradley, J.G., Burton, M., Dikarev, V.V., Economou, T., Fechtig, H., Green, S.F., Grande, M., Havnes, O., Hillier, J.K., Horanyi, M., Igenbergs, E., Jessberger, E.K., Johnson, T.V., Krüger, H., Matt, G., McBride, N., Mocker, A., Lamy, P., Linkert, D., Linkert, G., Lura, F., McDonnell, J.A.M., Möohlmann, D., Morfill, G.E., Postberg, F., Roy, M., Schwehm, G.H., Spahn, F., Svestka, J., Tschernjawski, V., Tuzzolino, A.J., Wäsch, R., Grün, E.: In situ dust measurements in the inner Saturnian system. Planet. Space Sci. 54, 967 (2006)CrossRefGoogle Scholar

Copyright information

© CEAS 2011

Authors and Affiliations

  • R. Srama
    • 1
    • 2
  • S. Kempf
    • 3
    • 13
  • G. Moragas-Klostermeyer
    • 1
  • N. Altobelli
    • 4
  • S. Auer
    • 5
  • U. Beckmann
    • 6
  • S. Bugiel
    • 2
    • 1
  • M. Burton
    • 7
  • T. Economomou
    • 8
  • H. Fechtig
    • 1
  • K. Fiege
    • 1
    • 3
  • S. F. Green
    • 9
  • M. Grande
    • 10
  • O. Havnes
    • 11
  • J. K. Hillier
    • 9
    • 19
  • S. Helfert
    • 12
  • M. Horanyi
    • 13
  • S. Hsu
    • 1
    • 13
  • E. Igenbergs
    • 14
  • E. K. Jessberger
    • 15
  • T. V. Johnson
    • 7
  • E. Khalisi
    • 1
  • H. Krüger
    • 6
  • G. Matt
    • 1
  • A. Mocker
    • 1
    • 2
  • P. Lamy
    • 16
  • G. Linkert
    • 1
  • F. Lura
    • 17
  • D. Möhlmann
    • 17
  • G. E. Morfill
    • 18
  • K. Otto
    • 13
  • F. Postberg
    • 1
    • 2
    • 19
  • M. Roy
    • 7
  • J. Schmidt
    • 20
  • G. H. Schwehm
    • 5
  • F. Spahn
    • 20
  • V. Sterken
    • 1
    • 3
  • J. Svestka
    • 21
  • V. Tschernjawski
    • 17
  • E. Grün
    • 1
    • 13
  • H.-P. Röser
    • 2
  1. 1.Max Planck Institut für KernphysikHidelbergGermany
  2. 2.IRS, Universtität StuttgartStuttgartGermany
  3. 3.Universtität BraunschweigBrunswickGermany
  4. 4.ESACMadridSpain
  5. 5.A&M AssociatesBasyeUSA
  6. 6.MPSKathlenburg-LindauGermany
  7. 7.JPLPasadenaUSA
  8. 8.Universtität ChicagoChicagoUSA
  9. 9.Open UniversityMilton KeynesUK
  10. 10.University of Wales AberystwythAberystwythUK
  11. 11.Universtität TromsoTromsoNorway
  12. 12.Helfert Informatik GmbH & Co KGMannheimGermany
  13. 13.LASP/Universtität ColoradoBoulderUSA
  14. 14.Universtität MünchenMunichGermany
  15. 15.Universtität MünsterMunsterGermany
  16. 16.LASMarseilleFrance
  17. 17.DLRBerlinGermany
  18. 18.MPEGarchingGermany
  19. 19.Universtität HeidelbergHeidelbergGermany
  20. 20.Universtität PotsdamPotsdamGermany
  21. 21.Prag ObservatoriumPrague 23Czech Republic

Personalised recommendations